(12分)已知,若滿足,
(1)求實(shí)數(shù)的值; (2)判斷函數(shù)的單調(diào)性,并加以證明。
(1)(2)函數(shù)為R上的增函數(shù)
解析試題分析:(1)直接根據(jù)f(-x)=-f(x),整理即可得到結(jié)論.
解:(1)∵f(x)是R上的奇函數(shù),∴f(-x)=-f(x),即
(2)直接根據(jù)單調(diào)性的證明過程證明即可.
(2)由(1)得f(x)=
∵x1<x2,∴2x1<2x2,∴f(x1)-f(x2)<0,所以f(x)在R上是增函數(shù)
考點(diǎn):函數(shù)單調(diào)性和奇偶性運(yùn)用
點(diǎn)評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、指數(shù)函數(shù)的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與化歸與轉(zhuǎn)化思想.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng) ,畫出函數(shù)的圖像,并求出函數(shù)的零點(diǎn);
(2)設(shè),且對任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
水庫的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為:
(1)該水庫的蓄水量小于50的時(shí)期稱為枯水期,以表示第月份(),問:同一年內(nèi)哪些月份是枯水期?
(2)求一年內(nèi)哪個(gè)月份該水庫的蓄水量最大,并求最大蓄水量。(取計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(梯形的上底線段與兩腰長的和)要最小.
(1)求外周長的最小值,并求外周長最小時(shí)防洪堤高h(yuǎn)為多少米?
(2)如防洪堤的高限制在的范圍內(nèi),外周長最小為多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米。
(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
商場銷售某一品牌的羊毛衫,購買人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購買人數(shù)越少.把購買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無效價(jià)格,已知無效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問:
(1)商場要獲取最大利潤,羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場要獲得最大利潤的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)關(guān)于x的方程=0.
(Ⅰ) 如果b=1,求實(shí)數(shù)x的值;
(Ⅱ) 如果且,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)南昌市在加大城市化進(jìn)程中,環(huán)境污染問題也日益突出。據(jù)環(huán)保局測定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設(shè)().
(1) 試將表示為的函數(shù);
(2) 若,且時(shí),取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)一種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x噸與每噸產(chǎn)品的價(jià)格(元)之間的關(guān)系為,且生產(chǎn)噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com