已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

(1).(2)直線EF的斜率為定值,其值為

解析試題分析:(1)由題意,c=1,可設(shè)橢圓方程為。
因?yàn)锳在橢圓上,所以,解得=3,(舍去)。
所以橢圓方程為 .         6分
(2)設(shè)直線AE方程:得,代入

設(shè)E(,),F(xiàn)(,).因?yàn)辄c(diǎn)A(1,)在橢圓上,所以

!          9分
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以,可得
,
。
所以直線EF的斜率。
即直線EF的斜率為定值,其值為。           13分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,本題求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用的橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。研究直線與圓錐曲線的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化解題過(guò)程,實(shí)現(xiàn)解題目的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的頂點(diǎn)為,焦點(diǎn)為,.

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過(guò)原點(diǎn)的直線,是與n垂直相交于P點(diǎn),與橢圓相交于A, B兩點(diǎn)的直線,.是否存在上述直線使成立?若存在,求出直線的方程;并說(shuō)出;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動(dòng)直線恒過(guò)點(diǎn)與拋物線交于A、B兩點(diǎn),與軸交于C點(diǎn),請(qǐng)你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長(zhǎng)總能構(gòu)成等比數(shù)列?說(shuō)明你的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若雙曲線的離心率等于,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線上一點(diǎn),且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,已知圓經(jīng)過(guò)點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為的橢圓過(guò)點(diǎn)(,).

(1)求橢圓的方程;
(2)設(shè)不過(guò)原點(diǎn)的直線與該橢圓交于、兩點(diǎn),滿足直線,,的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動(dòng)點(diǎn).

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過(guò)點(diǎn)作拋物線的兩條切線,分別為兩個(gè)切點(diǎn),設(shè)點(diǎn)到直線的距離為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案