若O是△ABC所在平面上任一點,且滿足:數(shù)學(xué)公式,則動點P的軌跡必經(jīng)過△ABC的


  1. A.
    內(nèi)心
  2. B.
    外心
  3. C.
    重心
  4. D.
    垂心
C
分析:以AB,AC為兩鄰邊作平行四邊形ABDC,連AD交BC于E,則E是BC中點,利用條件可知P的軌跡是直線AD,而AE是△ABC的中線,由此可得結(jié)論.
解答:解:以AB,AC為兩鄰邊作平行四邊形ABDC,連AD交BC于E,則E是BC中點,且
由已知,


∴P的軌跡是直線AD
而AE是△ABC的中線,因此P的軌跡(即直線AD)過△ABC的重心
故選C
點評:本題考點是三角形的五心,考查了五心中重心的幾何特征以及向量的加法與數(shù)乘運算,解答本題的關(guān)鍵是理解向量加法的幾何意義,從而確定點的幾何位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點O在△ABC所在平面上,若
OA
OB
=
OB
OC
=
OC
OA
,則點O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省攀枝花市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題

下列命題:①若共線,則存在唯一的實數(shù),使=;

②空間中,向量、、共面,則它們所在直線也共面;

③P是△ABC所在平面外一點,O是點P在平面上的射影.若PA 、PB、PC兩兩垂直,則O是△ABC垂心.

④若三點不共線,是平面外一點.,則點一定在平面上,且在△ABC內(nèi)部,上述命題中正確的命題是                  

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省哈爾濱六中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

點O在△ABC所在平面上,若,則點O是△ABC的( )
A.三條中線交點
B.三條高線交點
C.三條邊的中垂線交點
D.三條角分線交點

查看答案和解析>>

同步練習(xí)冊答案