已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結(jié)論正確的個(gè)數(shù)是( )
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

A.1
B.2
C.3
D.4
【答案】分析:由已知中六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.根據(jù)正六邊形的幾何特征,根據(jù)線面平行和線面垂直的判定定理,對(duì)四個(gè)答案逐一進(jìn)行判斷,即可得到結(jié)論.
解答:解:∵六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.
則AF∥CD,由線面平行的判定定理,可得CD∥平面PAF,故A正確;
DF⊥AF,DF⊥PA,由線面垂直的判定定理可得DF⊥平面PAF,故B正確;
CF∥AB,由線面平行的判定定理,可得CF∥平面PAB,故C正確;
CF與AD不相交,故D中,CF∥平面PAD不正確;
故正確的個(gè)數(shù)是3個(gè)
故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正六邊形的幾何特征,線面平行和線面垂直的判定,其中要判斷線面平行關(guān)鍵是要在平面內(nèi)找到一條直線與已知直線平行;要判斷線面垂直關(guān)鍵是在平面內(nèi)找到兩條相交直線與已知直線垂直.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,給出下列結(jié)論:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°;⑤直線PD與平面PAB所成角的余弦值為
10
4
.其中正確的有
①④⑤
①④⑤
(把所有正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結(jié)論不正確的序號(hào)是

①CD∥平面PAF
②DF⊥平面PAF
③CF∥平面PAB
④CF⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天門模擬)已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結(jié)論正確的個(gè)數(shù)是( 。
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結(jié)論正確的個(gè)數(shù)是
①CD∥平面PAF  ②DF⊥平面PAF、跜F∥平面PAB  ④CF∥平面PAD.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

同步練習(xí)冊(cè)答案