精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2x,對于任意的x1,x2(x1≠x2),有下列命題
①f(x1+x2)=f(x1)•f(x2);②f=f(x1)+f(x2);③;④.其中正確的命題序號是    
【答案】分析:根據指數的運算性質和指數函數的單調性以及凹凸性對①②③④進行逐一進行判定即可.
解答:解:=,所以對于①成立,
+,所以對于②不成立,
函數f(x)=2x,在R上是單調遞增函數,
若x1>x2則f(x1)>f(x2),則,
若x1<x2則f(x1)<f(x2),則,故③正確
說明函數是凹函數,而函數f(x)=2x是凹函數,故④正確
故答案為:①③④
點評:本題考查指數函數的性質,指數函數、對數函數是高考考查的重點內容之一,本節(jié)主要幫助考生掌握兩種函數的概念、圖象和性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、設函數f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

給定實數a(a≠
12
),設函數f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數y=f′(x)的單調區(qū)間;
(Ⅱ)對于所有整數a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
-2x+m2x+n
(m、n為常數,且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數f(x)不是奇函數;
(Ⅱ)若f(x)是奇函數,求出m、n的值,并判斷此時函數f(x)的單調性.

查看答案和解析>>

同步練習冊答案