14.已知等比數(shù)列{an}滿足anan+1=4n,則其公比為( 。
A.±4B.4C.±2D.2

分析 由已知得q2=$\frac{{a}_{2}{a}_{3}}{{a}_{1}{a}_{2}}$=$\frac{{4}^{2}}{4}$=4,${a}_{1}{a}_{2}={{a}_{1}}^{2}q$=4,由此能求出公比.

解答 解:∵等比數(shù)列{an}滿足anan+1=4n,
∴q2=$\frac{{a}_{2}{a}_{3}}{{a}_{1}{a}_{2}}$=$\frac{{4}^{2}}{4}$=4,
∴${a}_{1}{a}_{2}={{a}_{1}}^{2}q$=4,
∴q>0,∴q=2.
故選:D.

點(diǎn)評 本題考查等比數(shù)列的公比的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了調(diào)查“小學(xué)成績”和“中學(xué)成績”兩個(gè)變量之間是否存在相關(guān)關(guān)系,某科研機(jī)構(gòu)將所調(diào)查的結(jié)果統(tǒng)計(jì)如表所示:
中學(xué)成績不優(yōu)秀中學(xué)成績優(yōu)秀總計(jì)
小學(xué)成績優(yōu)秀52025
小學(xué)成績不優(yōu)秀10515
合計(jì)152540
則下列說法正確的是( 。
A.在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
D.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以3i-$\sqrt{2}$的虛部為實(shí)部,以3i2+$\sqrt{2}$i的實(shí)部為虛部的復(fù)數(shù)是(  )
A.3-3iB.3+iC.-$\sqrt{2}$+$\sqrt{2}$iD.$\sqrt{2}$+$\sqrt{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果x∈R,那么函數(shù)f(x)=cos2x+sinx的最小值為(  )
A.1B.$\frac{{1-\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}-1}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(實(shí)驗(yàn)班題)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<π.
(1)求sin(2α-$\frac{π}{6}$)的值;
(2)求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$.
(1)求ω、a、b的值;  
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.隨機(jī)抽取某廠的某種產(chǎn)品400件,經(jīng)質(zhì)檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(單位:萬元)為ξ.
(Ⅰ)求ξ的分布列;
(Ⅱ)求1件產(chǎn)品的平均利潤;
(Ⅲ)經(jīng)技術(shù)革新后,仍有四個(gè)等級的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤不小于4.75萬元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)$\overrightarrow a$是已知的平面向量且$\overrightarrow a$≠$\overrightarrow{0}$,關(guān)于向量$\overrightarrow a$的分解,有如下四個(gè)命題:
①給定向量$\overrightarrow b$,總存在向量$\overrightarrow c$,使$\overrightarrow a$=$\overrightarrow b$+$\overrightarrow c$;
②給定向量$\overrightarrow b$和$\overrightarrow c$,總存在實(shí)數(shù)λ和μ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
③給定單位向量$\overrightarrow b$和正數(shù)μ,總存在單位向量$\overrightarrow c$和實(shí)數(shù)λ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
④給定正數(shù)λ和μ,總存在單位向量$\overrightarrow$和單位向量$\overrightarrow c$,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
上述命題中的向量$\overrightarrow b$,$\overrightarrow c$和$\overrightarrow a$在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=alnx-(x+1)2,若存在正數(shù)x1,x2,當(dāng)x1<x2時(shí),f(x1)<f(x2),則實(shí)數(shù)a的取值范圍是a>0.

查看答案和解析>>

同步練習(xí)冊答案