精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四邊形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,點(diǎn)E為BC中點(diǎn),點(diǎn)F為B1C1中點(diǎn).
(Ⅰ)求證:平面A1ED⊥平面A1AEF;
(Ⅱ)求三棱錐E-A1FD的體積.
分析:(Ⅰ)由已知中AB=2,BC=4,∠ABC=60°,點(diǎn)E為BC中點(diǎn),我們易得到∠AEB=60°,∠CED=30°,進(jìn)而得到AE⊥ED,又由AA1⊥底面ABCD,得AA1⊥ED,結(jié)合線(xiàn)面垂直的判定定理得到ED⊥平面AA1EF,再由面面垂直的判定定理,即可得到平面A1ED⊥平面A1AEF;
(Ⅱ)將三棱錐E-A1FD的體積轉(zhuǎn)化為三棱錐D-A1FE的體積,求出棱錐的高及底面面積,代入棱錐體積公式,即可得到答案.
解答:解:(Ⅰ)證明:∵AB=2,BC=4,∠ABC=60°,點(diǎn)E為BC中點(diǎn),
∴△ABC為等邊三角形,∠AEB=60°
△CDE中,∠CED=30°
∴AE⊥ED
∵AA1⊥底面ABCD,
∴AA1⊥ED,
又由AE∩AA1=A
∴ED⊥平面AA1EF
又∵ED?平面A1ED
∴平面A1ED⊥平面A1AEF;
(Ⅱ)三棱錐E-A1FD的體積與三棱錐D-A1FE的體積相等
其中DE為棱錐的高,
又∵DE=AD•sin30°=2
3

∴V=
1
3
•(
1
2
×2×4)•2
3
=
8
3
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定,棱錐的體積,其中根據(jù)AB=2,AA1=BC=4,∠ABC=60°,點(diǎn)E為BC中點(diǎn),結(jié)合等腰三角形性質(zhì),得到AE⊥ED,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱AA1=2.
(Ⅰ)求證:C1D∥平面ABB1A1;
(Ⅱ)求直線(xiàn)BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底面邊長(zhǎng)均為2a,且∠A1AD=∠A1AB=60°,則側(cè)棱AA1和截面B1D1DB的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱A1A=2,
(Ⅰ)證明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一點(diǎn)P,使得
AP
PA1
,當(dāng)二面角A-B1C1-P的大小為300時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為AC⊥BD1的充分條件,并給予證明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四邊形.
(Ⅱ)設(shè)四棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都為1,且∠BAD為銳角,求平面BDD1與平面BC1D1所成銳二面角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天津)如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點(diǎn).
(Ⅰ)證明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)設(shè)點(diǎn)M在線(xiàn)段C1E上,且直線(xiàn)AM與平面ADD1A1所成角的正弦值為
2
6
,求線(xiàn)段AM的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案