分析 (1)由圓的方程求出圓心的坐標及半徑,由直線被圓截得的弦長,利用垂徑定理得到弦的一半,弦心距及圓的半徑構(gòu)成直角三角形,再根據(jù)勾股定理求出弦心距,一下分兩種情況考慮:若此弦所在直線方程的斜率不存在,顯然x=1滿足題意;若斜率存在,設(shè)出斜率為k,由直線過P點,由P的坐標及設(shè)出的k表示出直線的方程,利用點到直線的距離公式表示出圓心到所設(shè)直線的距離d,讓d等于求出的弦心距列出關(guān)于k的方程,求出方程的解得到k的值,進而得到所求直線的方程.
(2)MN平分∠ANB,kAN=-kNB,利用韋達定理,可得結(jié)論.
解答 解:(1)由圓的方程,得到圓心坐標為(0,0),半徑r=2,
∵直線被圓截得的弦長為2$\sqrt{3}$,
∴弦心距為1
若此弦所在的直線方程斜率不存在時,顯然x=1足題意;
若此弦所在的直線方程斜率存在,設(shè)斜率為k,
∴所求直線的方程為y-1=k(x-1)即kx-y-k+1=0
圓心到所設(shè)直線的距離d=$\frac{|-k+1|}{\sqrt{{k}^{2}+1}}$=1,得:k=0
此時所求方程為y-1=0
綜上,此弦所在直線的方程為x=1或y-1=0.
(2)直線斜率不存在時,x軸正半軸上任意一點都滿足;
斜率存在時,設(shè)方程為x=my+1,代入x2+y2=4可得(1+m2)y2+2my-3=0,
設(shè)N(t,0),A(x1,y1),B(x2,y2),則y1+y2=-$\frac{2m}{1+{m}^{2}}$,y1y2=-$\frac{3}{1+{m}^{2}}$
∵MN平分∠ANB,
∴kAN=-kNB,
∴y2(x1-t)+y1(x2-t)=0,
∴y2(my1+2-t)+y1(my2+2-t)=0,
∴2my1y2+(2-t)(y1+y2)=0,
∴2m•(-$\frac{3}{1+{m}^{2}}$)+(2-t)×(-$\frac{2m}{1+{m}^{2}}$)=0,
∴2m(t-5)=0,
∴t=5,即N(5,0),MN平分∠ANB.
點評 此題考查了直線與圓相交的性質(zhì),考查韋達定理的運用,考查學(xué)生的計算能力,涉及的知識有垂徑定理,勾股定理,點到直線的距離公式,以及直線的斜截式方程,利用了分類討論的思想,當(dāng)直線與圓相交時,常常由弦心距,弦的一半及圓的半徑構(gòu)造直角三角形,利用勾股定理來解決問題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù),且在(0,1)上是增函數(shù) | B. | 奇函數(shù),且在(0,1)上是減函數(shù) | ||
C. | 偶函數(shù),且在(0,1)上是增函數(shù) | D. | 偶函數(shù),且在(0,1)上是減函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com