已知△ABC的三邊長(zhǎng)BC=a,AC=b,AB=c,O為△ABC所在平面內(nèi)一點(diǎn),若a
OA
+b
OB
+c
OC
=
0
,則點(diǎn)O是△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心
考點(diǎn):向量在幾何中的應(yīng)用
專題:計(jì)算題,平面向量及應(yīng)用
分析:由題意,化簡(jiǎn)a
OA
+b
OB
+c
OC
=
0
可得
AO
=
bc
a+b+c
AB
|AB|
+
AC
|AC|
),從而可得AO平分∠BAC,進(jìn)而可知O是△ABC的內(nèi)心.
解答: 解:∵a
OA
+b
OB
+c
OC
=
0
,
∴a
OA
+b(
OA
+
AB
)+c(
OA
+
AC
)=
0
,
∴(a+b+c)
OA
+b
AB
+c
AC
=
0
,
AO
=
b
a+b+c
AB
+
c
a+b+c
AC

=
bc
a+b+c
AB
|AB|
+
AC
|AC|
),
AB
|AB|
AC
|AC|
分別是
AB
AC
方向上的單位向量,
設(shè)
AB
|AB|
+
AC
|AC|
是∠BAC平分線所在的向量,
故AO平分∠BAC,
同理可證:BO平分∠ABC,
CO平分∠ACB,
從而O是△ABC的內(nèi)心.
故選B.
點(diǎn)評(píng):本題考查了平面向量的線性運(yùn)算的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的斜邊為10,內(nèi)切圓的半徑為2,則兩條直角邊的長(zhǎng)為( 。
A、5和5
3
B、4
3
和5
3
C、6和8
D、5和7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC內(nèi)一點(diǎn)O滿足關(guān)系λ1
OA
2
OB
3
OC
=
O
,則S△BOC:S△COA:S△AOB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a,b,c,若a⊥c,b⊥c,則a與b的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=-x與直線l:y=k(x+1)相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求
OA
OB
的值;
(2)當(dāng)△AOB的面積為
10
時(shí),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,則下列命題正確的是
 
(寫(xiě)出所有正確命題的序號(hào)).
b
a
cosC<1-
c
a
cosB;
②△ABC的面積為S△ABC=
1
2
AB
AC
•tanA;
③若acosA=ccosC,則△ABC一定為等腰三角形;
④若A是△ABC中的最大角,則△ABC為鈍角三角形的充要條件是-1<sinA+cosA<1;
⑤若A=
π
3
,a=
3
,則b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線xy=1與直線y=x和y=3所圍成的平面圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M是面對(duì)角線A1B上的動(dòng)點(diǎn),則AM+MD1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
1
x

(1)求定義域;
(2)證明f(x)在[1,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案