已知函數(shù) 數(shù)學(xué)公式,a∈R.
(Ⅰ)當(dāng) a=1時(shí),求函數(shù) f(x)的最小值;
(Ⅱ)當(dāng)a<0時(shí),討論函數(shù) f(x)的單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù)a,對(duì)任意的 x1,x2∈(0,+∞),且x1≠x2,有數(shù)學(xué)公式恒成立,若存在求出a的取值范圍,若不存在,說(shuō)明理由.

解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?,+∞),
,
當(dāng)a=1時(shí),

∴當(dāng)x∈(0,2)時(shí),f'(x)<0,f(x)為減函數(shù);
當(dāng)x∈(2,+∞),f'(x)>0,f(x)為增函數(shù).
∴f(x)在x=2時(shí)取得最小值,其最小值為f(2)=-2ln2.
(Ⅱ)∵,
∴(1)當(dāng)-2<a<0時(shí),若x∈(0,-a),f'(x)>0,f(x)為增函數(shù);
若x∈(-a,2),f'(x)<0,f(x)為減函數(shù);
若x∈(2,+∞),f'(x)>0,f(x)為增函數(shù).
(2)當(dāng)a=-2時(shí),在(0,+∞)上f(x)≥0,f(x)為增函數(shù);
(3)當(dāng)a<-2時(shí),若x∈(0,2),f'(x)>0,f(x)為增函數(shù);
若x∈(2,-a),f'(x)<0,f(x)為減函數(shù);
若x∈(-a,+∞),f'(x)>0,f(x)為增函數(shù).
(Ⅲ)假設(shè)存在實(shí)數(shù)a使得對(duì)任意的 x1,x2∈(0,+∞),且x1≠x2,有恒成立,
不妨設(shè)0<x1<x2,只要,即:f(x2)-ax2>f(x1)-ax1
令g(x)=f(x)-ax,只要 g(x)在(0,+∞)為增函數(shù)即可.
又函數(shù)
考查函數(shù)
要使g'(x)≥0在(0,+∞)恒成立,只要-1-2a≥0,即a,
故存在實(shí)數(shù)a,對(duì)任意的 x1,x2∈(0,+∞),且x1≠x2
恒成立.
分析:(Ⅰ)把a(bǔ)=1代入函數(shù)解析式,求導(dǎo)后解出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,判出在各區(qū)間段內(nèi)的單調(diào)性,從而的導(dǎo)函數(shù)的最小值;
(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)a的不同取值對(duì)函數(shù)定義域分段,由函數(shù)導(dǎo)函數(shù)的符號(hào)判斷原函數(shù)在各區(qū)間段內(nèi)的單調(diào)性;
(Ⅲ)在假設(shè)存在實(shí)數(shù)a使得對(duì)任意的 x1,x2∈(0,+∞),且x1≠x2,有恒成立的前提下,把問(wèn)題轉(zhuǎn)化為(x2)-ax2>f(x1)-ax1恒成立,然后構(gòu)造函數(shù)g(x)=f(x)-ax,利用導(dǎo)函數(shù)求出使函數(shù)g(x)在(0,+∞)上為增函數(shù)的a的取值范圍.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了導(dǎo)數(shù)在最大值最小值中的應(yīng)用,考查了數(shù)學(xué)轉(zhuǎn)化思想和分類討論的數(shù)學(xué)思想方法,訓(xùn)練了利用構(gòu)造函數(shù)法求參數(shù)的取值范圍,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市十一學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省常州高級(jí)中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省天水一中高一(下)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值;
(2)如果對(duì)于區(qū)間上的任意一個(gè)x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省梅州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案