20.已知直線(xiàn)l:x-y+3=0被圓(x-a)2+(y-2)2=4截得的弦長(zhǎng)為2$\sqrt{3}$時(shí),實(shí)數(shù)a的值為-1±$\sqrt{2}$.

分析 弦心距、半徑、半弦長(zhǎng)滿(mǎn)足勾股定理,半徑是2,半弦長(zhǎng)是$\sqrt{3}$,則弦心距是1,用點(diǎn)到直線(xiàn)的距離可以求解a.

解答 解:圓C:(x-a)2+(y-2)2=4的圓心(a,2),半徑是2,
半弦長(zhǎng)是$\sqrt{3}$,則弦心距是1,
圓心到直線(xiàn)的距離:1=$\frac{|a-2+3|}{\sqrt{2}}$,
∴a=-1±$\sqrt{2}$.
故答案為:-1±$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線(xiàn)與圓的位置關(guān)系,弦心距、半徑、半弦長(zhǎng)滿(mǎn)足勾股定理,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.將點(diǎn)P的直角坐標(biāo)(-$\sqrt{3}$,-1)化成極坐標(biāo)( 。
A.(2,$\frac{π}{3}$)B.(2,$\frac{π}{2}$)C.(2,$\frac{4π}{3}$)D.(2,$\frac{7π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.有20件產(chǎn)品,其中5件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽取2件產(chǎn)品.求
(1)第一次抽到次品的概率;    
(2)第一次和第二次都抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖是-個(gè)幾何體的三視圖,在該幾何體的各個(gè)面中,面積最小的面的面積為( 。
A.4B.8C.4$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知全集U={x|1≤x≤5}.A={x|1≤x<a},若∁UA={x|2≤x≤5},a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等邊△ABC的邊長(zhǎng)為2,則$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知P(-2,1),Q(2,t).點(diǎn)M為直線(xiàn)y+1=0上的動(dòng)點(diǎn).若存在以PQ為直徑的圓過(guò)點(diǎn)M,則實(shí)數(shù)t的取值范圍為t≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.2016高考成績(jī)已經(jīng)揭曉,各大985名校展開(kāi)爭(zhēng)搶優(yōu)秀生源的大戰(zhàn).某校在參加“華約”聯(lián)盟筆試的學(xué)生中隨機(jī)抽取100名學(xué)生,將他們的成績(jī)由低到高分成1~5組得到如圖的頻率頻率分布直方圖.
(Ⅰ)估計(jì)參加“華約”聯(lián)盟筆試成績(jī)的中位數(shù)(結(jié)果精確到個(gè)位);
(Ⅱ)若在成績(jī)較高的第4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入模擬面試,求第4,5組各抽取多少人?
(Ⅲ)在(Ⅱ)的條件下,從這6名學(xué)生中任取2人參加答辯環(huán)節(jié),求這兩人來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d,給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,請(qǐng)你根據(jù)這一發(fā)現(xiàn),則函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$的對(duì)稱(chēng)中心為( 。
A.$(\frac{1}{2},1)$B.$(-\frac{1}{2},1)$C.$(\frac{1}{2},-1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案