如圖,設(shè)F是圖中邊長為1的正方形區(qū)域,E是分別以B,D為圓心,1為半徑的圓的公共部分,向F中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為( 。
分析:由題意知本題是一個(gè)幾何概型,試驗(yàn)發(fā)生包含的所有事件是矩形面積S=1×2,而空白區(qū)域可以看作是由二部分組成,每一部分是由邊長為1的正方形面積減去半徑為1的四分之一圓的面積得到,最后利用幾何概型的概率公式解之即可.
解答:解:由題意知本題是一個(gè)幾何概型,
∵試驗(yàn)發(fā)生包含的所有事件是矩形面積S=1×2=2,
空白區(qū)域的面積是2(1-
1
4
π)=2-
1
2
π,
則區(qū)域E的面積為1-(2-
1
2
π)=
π
2
-1
∴由幾何概型公式得到P=
π
2
-1
1
=
π-2
2

故選D.
點(diǎn)評(píng):本題主要考查了幾何概型,解題的關(guān)鍵求陰影部分的面積,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點(diǎn),截面DEF∥底面ABC,且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
(1)證明:P-ABC為正四面體;
(2)若PD=PA=
12
求二面角D-BC-A的大。唬ńY(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)DEF-ABC的體積為V,是否存在體積為V且各棱長均相等的直平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,設(shè)F是圖中邊長為1的正方形區(qū)域,E是分別以B,D為圓心,1為半徑的圓的公共部分,向F中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海高考真題 題型:解答題

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點(diǎn),截面DEF∥底面ABC,且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長和相等。(棱長和是指多面體中所有棱的長度之和)

(1)證明:P-ABC為正四面體;
(2)若PD=PA,求二面角D-BC-A的大。唬ńY(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)DEF-ABC的體積為V,是否存在體積為V且各棱長均相等的直平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年上海市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點(diǎn),截面DEF∥底面ABC,且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
(1)證明:P-ABC為正四面體;
(2)若PD=PA=求二面角D-BC-A的大小;(結(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)DEF-ABC的體積為V,是否存在體積為V且各棱長均相等的直平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案