【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線與交與, ,求, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、C(4,0),半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長(zhǎng)為 r.
(1)求圓M的方程;(2)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點(diǎn),且AP= ,若 =λ +μ ,(λ,μ∈R),則λ+ μ的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角為, 的長(zhǎng)度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻、總長(zhǎng)度為200米,如何可使得三角形地塊面積最大?
(2)已知竹籬笆長(zhǎng)為米, 段圍墻高1米, 段圍墻高2米,造價(jià)均為每平方米100元,若,求圍墻總造價(jià)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓上的任意一點(diǎn),點(diǎn)為圓的圓心,點(diǎn)與點(diǎn)關(guān)于平面直角系的坐標(biāo)原點(diǎn)對(duì)稱,線段的垂直平分線與線段交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若軌跡與軸正半軸交于點(diǎn),直線交軌跡于兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))
(1)設(shè)過點(diǎn)的直線與曲線相切于點(diǎn),求的值;
(2)若函數(shù)的圖象與函數(shù)的圖象在內(nèi)有交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)使用計(jì)算器求30個(gè)數(shù)據(jù)的平均數(shù)時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實(shí)際平均數(shù)的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com