已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.
(1)-,(2){a|a>1或a=-2-2}
解析試題分析:(1)根據(jù)偶函數(shù)性質(zhì)列等量關(guān)系:∵f(x)為偶函數(shù),∴f(-x)=f(x),即log4(4-x+1)-kx=log4(4x+1)+kx,即(2k+1)x=0,∴k=-.(2)先將方程轉(zhuǎn)化為一元二次方程.由 得log4(4x+1)-x=log4 (a·2x-a),即令t=2x,則(1-a)t2+at+1=0,只需其有一正根即可滿足題意.①當a=1時,t=-1,不合題意,舍去.②有一正一負根, ,a>1. ③有兩根相等,a=-2(+1).
解:(1)∵f(x)為偶函數(shù),∴f(-x)=f(x),
即log4(4-x+1)-kx=log4(4x+1)+kx,
即(2k+1)x=0,∴k=-. 6分
(2)依題意令log4(4x+1)-x=log4 (a·2x-a),
即 8分
令t=2x,則(1-a)t2+at+1=0,只需其有一正根即可滿足題意.
①當a=1時,t=-1,不合題意,舍去. 9分
②上式有一正一負根t1,t2,
即,得a>1.
此時,a·2x-a=>0, ∴a>1. ------11分
③上式有兩根相等,即Δ=0⇒a=±2-2,此時t=,
若a=2(-1),則有t=<0,此時方程(1-a)t2+at+1=0無正根,
故a=2(-1)舍去; 13分
若a=-2(+1),則有t=>0,且a· 2x-a=a(t-1)=a=>0,因此a=-2(+1). 15分
綜上所述,a的取值范圍為{a|a>1或a=-2-2}. 16分
考點:偶函數(shù),二次方程根與系數(shù)關(guān)系
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)若存在,成立,則稱為的不動點.已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù),不等式的解集為.
(1)求的解析式;
(2)若函數(shù)在上單調(diào),求實數(shù)的取值范圍;
(3)若對于任意的x∈[-2,2],都成立,求實數(shù)n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點.
(1)求f(x)的解析式;
(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點;
(2)設(shè),若對任意、,有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com