一個(gè)扇形的周長(zhǎng)為4,求扇形的半徑、圓心角各取何值時(shí),此扇形的面積最大.
考點(diǎn):扇形面積公式
專題:計(jì)算題,三角函數(shù)的求值
分析:設(shè)扇形的半徑為r,弧長(zhǎng)為l,則2r+l=4,l=4-2r,從而可得扇形的面積,利用配方法可求最值.
解答: 解:設(shè)扇形的半徑為r,弧長(zhǎng)為l,
則2r+l=4,l=4-2r…(4分)
∴S=
1
2
r(4-2r)=-(r-1)2+1…(10分)
當(dāng)r=1時(shí),Smax=1,
此時(shí)l=2,α=2…(14分)
點(diǎn)評(píng):本題考查扇形的面積的計(jì)算,考查配方法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax-a-x存在唯一的零點(diǎn)x0,則當(dāng)x0>x>0時(shí),恒有( 。
A、f(x)<0
B、1-a>f(x)>0
C、f(x)>1-a
D、以上判斷都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x)=-f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)x-1
,若在x∈[-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )
A、(1,2)
B、(2,+∞)
C、(
34
,2)
D、(1,
34
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx-sin2x.
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f(
A
2
)=2,a=
3
,b=1,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩艘貨輪都要在某個(gè)泊位?6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),試求兩船中有一艘在停泊位時(shí),另一艘船必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為4m的水輪如圖所示,水輪圓心O距離水面2m,已知水輪沿逆時(shí)針方向勻速旋轉(zhuǎn),每分鐘轉(zhuǎn)動(dòng)6圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)P0)開始計(jì)算時(shí)間.
(1)將點(diǎn)P距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);
(2)在水輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離水面超過4m?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間及最小正周期;
(Ⅱ)若對(duì)于任意的x∈[0,
π
2
],都有f(x)≤c,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=-
3
5
5
,且|sinα|>|cosα|,求cos3α-sin3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
x
(a>0)
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在[1,e]上的最小值為0?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案