【題目】已知集合,,,令表示集合所含元素的個(gè)數(shù).
(1)寫出的值;
(2)當(dāng)時(shí),寫出的表達(dá)式,并用數(shù)學(xué)歸納法證明.
【答案】(1)13
(2)
【解析】
試題(1)根據(jù)題意按分類計(jì)數(shù):共13個(gè)(2)由(1)知,所以當(dāng)時(shí),的表達(dá)式要按除的余數(shù)進(jìn)行分類,最后不難利用數(shù)學(xué)歸納法進(jìn)行證明
試題解析:(1).
(2)當(dāng)時(shí),().
下面用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),,結(jié)論成立;
②假設(shè)()時(shí)結(jié)論成立,那么時(shí),在的基礎(chǔ)上新增加的元素在,,中產(chǎn)生,分以下情形討論:
1)若,則,此時(shí)有
,結(jié)論成立;
2)若,則,此時(shí)有
,結(jié)論成立;
3)若,則,此時(shí)有
,結(jié)論成立;
4)若,則,此時(shí)有
,結(jié)論成立;
5)若,則,此時(shí)有
,結(jié)論成立;
6)若,則,此時(shí)有
,結(jié)論成立.
綜上所述,結(jié)論對(duì)滿足的自然數(shù)均成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品在50個(gè)不同地區(qū)的零售價(jià)格全部介于13元與18元之間,將各地價(jià)格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.
(1)求價(jià)格落在內(nèi)的地區(qū)數(shù);
(2)借助頻率分布直方圖,估計(jì)該商品價(jià)格的中位數(shù)(精確到0.1);
(3)現(xiàn)從,這兩組的全部樣本數(shù)據(jù)中,隨機(jī)選取兩個(gè)地區(qū)的零售價(jià)格,記為,,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)集,令.從集合Mn中任取兩個(gè)不同的點(diǎn),用隨機(jī)變量X表示它們之間的距離.
(1)當(dāng)n=1時(shí),求X的概率分布;
(2)對(duì)給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬(wàn)元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息 | 在不堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 在堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 堵車的概率 | 運(yùn)費(fèi)(萬(wàn)元) |
公路1 | 2 | 3 | 1.6 | |
公路2 | 1 | 4 | 0.8 |
(1)記汽車選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望;
(2)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊三棱錐形木塊,各面均是銳角三角形,其中面內(nèi)有一點(diǎn).
(1)若要在面內(nèi)過(guò)點(diǎn)畫一條線段,其中點(diǎn)在線段上,點(diǎn)在線段上,且滿足與垂直,該如何求作?請(qǐng)?jiān)趫D中畫出線段并說(shuō)明畫法,不必證明;
(2)經(jīng)測(cè)量,,,,,若恰為三角形的重心,為(1)中所求線段,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)的產(chǎn)品具有60個(gè)月的時(shí)效性,在時(shí)效期內(nèi),企業(yè)投入50萬(wàn)元經(jīng)銷該產(chǎn)品,為了獲得更多的利潤(rùn),企業(yè)將每月獲得利潤(rùn)的10%再投入到次月的經(jīng)營(yíng)中,市場(chǎng)調(diào)研表明,該企業(yè)在經(jīng)銷這個(gè)產(chǎn)品的第個(gè)月的利潤(rùn)是(單位:萬(wàn)元),記第個(gè)月的當(dāng)月利潤(rùn)率為,例.
(1)求第個(gè)月的當(dāng)月利潤(rùn)率;
(2)求該企業(yè)在經(jīng)銷此產(chǎn)品期間,哪一個(gè)月的當(dāng)月利潤(rùn)率最大,并求出該月的當(dāng)月利潤(rùn)率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種質(zhì)地均勻的正四面體玩具的4個(gè)面上分別標(biāo)有數(shù)字0,1,2,3,將這個(gè)玩具拋擲次,記第次拋擲后玩具與桌面接觸的面上所標(biāo)的數(shù)字為,數(shù)列的前和為.記是3的倍數(shù)的概率為.
(1)求,;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com