【題目】設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
(1)若α⊥γ,β⊥γ,則α//β;
(2)若mα,nα, , 則α//β;
(3)若α//β,lα,則l//β;
(4)若 , l//γ,則m//n.
其中正確的命題是( )
A.(1)(3)
B.(2)(3)
C.(2)(4)
D.(3)(4)

【答案】D
【解析】(1)不正確,面可能相交。(2)不正確,當(dāng)直線平行時(shí),還可能相交;根據(jù)面面平行的判定定理只有當(dāng)相交時(shí),。(3)正確,根據(jù)面面平行定義可知無(wú)公共點(diǎn),即可知。(4)正確,因?yàn)?/span> , 可知 , 又因?yàn)?/span> , 則。
綜上可得D正確。
【考點(diǎn)精析】利用直線與平面平行的判定和平面與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線的兩個(gè)平面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出x萬(wàn)元與銷售額y萬(wàn)元之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)畫(huà)出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為12萬(wàn)元時(shí),銷售收入y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知已知圓 經(jīng)過(guò) 兩點(diǎn),且圓心C在直線 上,求解:(1)圓C的方程;(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱A1B1C1D1﹣ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件 時(shí),有A1C⊥B1D1 . (注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,點(diǎn)D是AB的中點(diǎn).

(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣6x2+9x,g(x)= x3 x2+ax﹣ (a>1)若對(duì)任意的x1∈[0,4],總存在x2∈[0,4],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為(
A.(1, ]
B.[9,+∞)??
C.(1, ]∪[9,+∞)
D.[ , ]∪[9,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案