【題目】已知函數(shù)f(x)=2sinxcos(x+ )+ .
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值及最小值.
【答案】
(1)解:函數(shù)f(x)=2sinxcos(x+ )+ =2sinx( cosx﹣ sinx)+ =sinxcosx﹣ sin2x+
= sin2x﹣ + =sin(2x+ ).
令2kπ+ ≤x≤2kπ+ ,求得kπ+ ≤x≤kπ+ ,可得函數(shù)的減區(qū)間為[kπ+ ,kπ+ ],k∈Z.
(2)解:在區(qū)間[0, ]上,2x+ ∈[ , ],
故當(dāng)2x+ = 時(shí),函數(shù)f(x)取得最大值為1;當(dāng)2x+ = 時(shí),函數(shù)f(x)取得最小值為﹣
【解析】(1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞減區(qū)間.(2)利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在區(qū)間[0, ]上的最值.
【考點(diǎn)精析】本題主要考查了正弦函數(shù)的單調(diào)性和三角函數(shù)的最值的相關(guān)知識(shí)點(diǎn),需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:在△ABC中,若AB<BC,則sinC<sinA;命題q:已知a∈R,則“a>1”是“ <1”的必要不充分條件.在命題p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命題個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為正方形,延長(zhǎng)AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A= .
(1)若E,F(xiàn)分別為C1B1 , AC的中點(diǎn),求證:EF∥平面ABB1A1;
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)定義域?yàn)?/span>,
(1)求的取值范圍;
(2)若函數(shù)在上的最大值與最小值之積為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)對(duì)于函數(shù)f(x)、f1(x)、f2(x),若對(duì)于區(qū)間D上的任意一個(gè)x,都有f1(x)<f(x)<f2(x),則稱函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個(gè)“分界函數(shù)”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問(wèn)是否存在實(shí)數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個(gè)“分界函數(shù)”?若存在,求實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
Ⅰ判斷直線l與圓C的交點(diǎn)個(gè)數(shù);
Ⅱ若圓C與直線l交于A,B兩點(diǎn),求線段AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中,,,,,為的中點(diǎn),矩形所在的平面和平面互相垂直.
()求證:平面.
()設(shè)的中點(diǎn)為,求證:平面.
()求三棱錐的體積.(只寫(xiě)出結(jié)果,不要求計(jì)算過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)學(xué)歸納法證明“能被3整除”的第二步中,時(shí),為了使用假設(shè),應(yīng)將5k+1-2k+1變形為( ).
A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k
C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com