【題目】已知橢圓:的左、右焦點分別為,,過原點且斜率為1的直線交橢圓于兩點,四邊形的周長與面積分別為12與.
(1)求橢圓的標準方程;
(2)直線與圓相切,且與橢圓交于兩點,求原點到的中垂線的最大距離.
【答案】(1)(2)
【解析】
(1)不妨設點是第一象限的點,由四邊形的周長求出,面積求出與關(guān)系,再由點在直線上,得到與關(guān)系,代入橢圓方程,求解即可;
(2)先求出直線斜率不存在時,原點到的中垂線的距離,斜率為0時與橢圓只有一個交點,直線斜率存在時,設其方程為,利用與圓相切,求出關(guān)系,直線方程與橢圓方程聯(lián)立,求出中點坐標,得到的中垂線方程,進而求出原點到中垂線的距離表達式,結(jié)合關(guān)系,即可求出結(jié)論.
(1)不妨設點是第一象限的點,
因為四邊形的周長為12,所以,,
因為,所以,
得,點為過原點且斜率為1的直線與橢圓的交點,
即點在直線上,點在橢圓上,
所以,即,
解得或(舍),
所以橢圓的標準方程為.
(2)當直線的斜率不存在時,直線為,
線段的中垂線為軸,原點到軸的距離為0.
當直線的斜率存在時,設斜率為,依題意可設,
因為直線與圓相切,所以,
設,,聯(lián)立,
得,
由,得,又因為,所以,
所以,
所以的中點坐標為,
所以的中垂線方程為,
化簡,得,
原點到直線中垂線的距離,
當且僅當,即時,等號成立,
所以原點到的中垂線的最大距離為.
科目:高中數(shù)學 來源: 題型:
【題目】下列各對事件中,不是相互獨立事件的有( )
A.運動員甲射擊一次,“射中9環(huán)”與“射中8環(huán)”
B.甲乙兩運動員各射擊一次,“甲射中10環(huán)”與“乙射中9環(huán)”
C.甲乙兩運動員各射擊一次,“甲乙都射中目標”與“甲乙都沒有射中目標”
D.甲乙兩運動員各射擊一次,“至少有1人射中目標”與“甲射中目標但乙未射中目標”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點,F為其右焦點,2是|AF|與|FB|的等差中項,是|AF|與|FB|的等比中項.點P是橢圓C上異于A,B的任一動點,過點A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.
(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出點N的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點,為橢圓上一點,且.
(1)求橢圓的標準方程;
(2)設直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線于、兩點,當最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著科學技術(shù)的飛速發(fā)展,網(wǎng)絡也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;
(2)該公司為了吸引網(wǎng)購者,特別推出“玩網(wǎng)絡游戲,送免費購物券”活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網(wǎng)購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網(wǎng)購者可獲得免費購物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從到)若擲出偶數(shù)遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下面左圖,在直角梯形中,,,,,,點在上,且,將沿折起,得到四棱錐(如下面右圖).
(1)求四棱錐的體積的最大值;
(2)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】半正多面體(semiregular solid)亦稱“阿基米德多面體”,如圖所示,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.將正方體沿交于一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,得到一個有十四個面的半正多面體,它們的邊長都相等,其中八個為正三角形,六個為正方形,稱這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長為,則該二十四等邊體外接球的表面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com