設M={平面內(nèi)的點(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點(1,
3
)
的像f(x)的圖象可以由曲線y=2sin2x按向量
m
平移得到,則向量
m
的坐標為( 。
分析:由題意寫出f(x)的解析式,利用兩角和的正弦公式化簡f(x)的解析式為2sin(2x+
π
6
),根據(jù)y=Asin(ωx+∅)的圖象的平移規(guī)律求出向量m的坐標.
解答:解:f(x)=cos2x+
3
sin2x=2sin(2x+
π
6
),
把曲線y=2sin2x的圖象上所有的點向左平移
π
12
個單位,可得y=2sin2(x+
π
12
)=2sin(2x+
π
6
)的圖象,
故向量
m
的坐標為(-
π
12
,0)
,
故選:C.
點評:本題考查映射的概念、三角函數(shù)的化簡、求周期等性質(zhì),y=Asin(ωx+∅)的圖象的平移,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設M={ 平面內(nèi)的點(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,則點(2,  
3
)
的像f(x)的最小正周期是( 。
A、π
B、
π
2
C、2π
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源:2011年甘肅省蘭州一中高考數(shù)學三模試卷(文科)(解析版) 題型:選擇題

設M={平面內(nèi)的點(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點的像f(x)的圖象可以由曲線y=2sin2x按向量平移得到,則向量的坐標為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年甘肅省蘭州一中高考數(shù)學三模試卷(理科)(解析版) 題型:選擇題

設M={平面內(nèi)的點(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點的像f(x)的圖象可以由曲線y=2sin2x按向量平移得到,則向量的坐標為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省宜春市上高二中高三(下)第七次月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設M={ 平面內(nèi)的點(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,則點的像f(x)的最小正周期是( )
A.π
B.
C.2π
D.

查看答案和解析>>

同步練習冊答案