已知函數(shù)(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.
【答案】分析:(1)由a=-3得到f(x)的解析式,求出導(dǎo)函數(shù)等于0時(shí)x的值,討論函數(shù)的增減性得到函數(shù)的極值;
(2)求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)根的判別式討論導(dǎo)函數(shù)=0方程的解的情況得到關(guān)于a的不等式,因?yàn)閳D象與x軸有且只有一個(gè)交點(diǎn),①根的判別式小于等于0,f′(x)≥0在R上恒成立,f(x)在R上單調(diào)遞增,f(0)=-a<0,f(3)=2a>0;②根的判別式大于0時(shí)由f(x1)•f(x2)>0得到求出a的解集可.
解答:解:(1)當(dāng)a=-3時(shí),,
∴f′(x)=x2-2x-3=(x-3)(x+1).
令f′(x)=0,得x1=-1,x2=3.
當(dāng)x<-1時(shí),f′(x)>0,則f(x)在(-∞,-1)上單調(diào)遞增;
當(dāng)-1<x<3時(shí),f′(x)<0,則f(x)在(-1,,3)上單調(diào)遞減;
當(dāng)x>3時(shí),f′(x)>0,f(x)在(3,+∞)上單調(diào)遞增.
∴當(dāng)x=-1時(shí),f(x)取得極大值為f(-1)=
當(dāng)x=3時(shí),f(x)取得極小值為=-6.
(2)∵f′(x)=x2-2x+a,∴△=4-4a=4(1-a).
①若a≥1,則△≤0,∴f′(x)≥0在R上恒成立,∴f(x)在R上單調(diào)遞增.∵f(0)=-a<0,f(3)=2a>0,∴當(dāng)a≥1時(shí),函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).
②若a<1,則△>0,∴f′(x)=0有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè)為x1,x2,(x1<x2).∴x1+x2=2,x1x2=a.
當(dāng)x變化時(shí),f′(x),f(x)的取值情況如下表:
∵x12-2x1+a=0,∴a=-x12+2x1
===
同理f(x2)=
===
令f(x1)•f(x2)>0,解得a>0.
而當(dāng)0<a<1時(shí),f(0)=-a<0,f(3)=2a>0,
故當(dāng)0<a<1時(shí),函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn).
綜上所述,a的取值范圍是(0,+∞).
點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,分類討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州高級(jí)中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水一中高一(下)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值;
(2)如果對(duì)于區(qū)間上的任意一個(gè)x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省梅州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案