(本題滿分14分)已知圓和圓外一點(diǎn).

(1)過(guò)作圓的割線交圓于兩點(diǎn),若||=4,求直線的方程;

(2)過(guò)作圓的切線,切點(diǎn)為,求切線長(zhǎng)及所在直線的方程.

 

【答案】

(1)直線的方程(2)切線長(zhǎng)為所在直線的方程為

【解析】

試題分析:(1)圓的方程可化為:,圓心為,半徑

①若割線斜率存在,設(shè),即

設(shè)的中點(diǎn)為,則|PN|=

則直線:.           ……4分

②若割線斜率不存在,則直線,代入圓方程得,

解得符合題意,

綜上,直線的方程為.                         ……7分

(2)切線長(zhǎng)為

為直徑的圓的方程為,

.

又已知圓的方程為,兩式相減,得,

所以直線的方程為.                                    ……14分

考點(diǎn):本小題主要考查直線與圓的位置關(guān)系、圓與圓的位置關(guān)系以及弦長(zhǎng)公式的應(yīng)用,考查學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力和運(yùn)算求解能力.

點(diǎn)評(píng):要解決好此類問(wèn)題就要牢固掌握直線與圓的位置關(guān)系的判斷,注重圓的幾何性質(zhì)在解題的中的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)已知向量 ,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過(guò)坐標(biāo)原點(diǎn)且斜率為的直線相交于、

⑴求、的值;

⑵若動(dòng)圓與橢圓和直線都沒有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案