已知點A(2,1)、B(1,3),直線ax-by+1=0(a,b∈R+)與線段AB相交,則(a-1)2+b2的最小值為( 。
A、
10
5
B、
2
5
C、
2
5
5
D、
4
5
考點:簡單線性規(guī)劃的應用
專題:不等式的解法及應用
分析:求出不等式組,以及對應的平面區(qū)域,設d=
(a-1)2+b2
,利用d的幾何意義,即可得到結論.
解答: 解:由已知有
2a-b+1≥0
a-3b+1≤0
a>0
b>0
,作出可行域,

d=
(a-1)2+b2
,則d的幾何意義為平面區(qū)域內的點到點(1,0)的距離,
由圖象可知d的最小值為點(1,0)到直線a-3b+1=0的距離,此時dmin=
10
5
,
∴(a-1)2+b2的最小值為
2
5
,
故選B.
點評:本題主要考查線性規(guī)劃的應用,利用d的幾何意義,結合數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在六面體PABCQ中,QA=QB=QC=AB=CB=CA=
2
PA=
2
PB=
2
PC=1,設O1為正三棱錐P-ABC外接球的球心,O2為三棱錐Q-ABC內切球的球心,則O1O2等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m≥2,點P(x,y)為
y≥x
y≤mx
x+y≤1
所表示的平面區(qū)域內任意一點,M(0,-5),O坐標原點,f(m)為
OP
OM
的最小值,則f(m)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和Sn,若-1<a3<1,0<a4<3,則S9的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個由三個正方體組成幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、9+2
2
B、11
C、9.125
D、10+2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓C的兩個焦點,焦距為4.若P為橢圓C上一點,且△PF1F2的周長為14,則橢圓C的離心率e為( 。
A、
1
5
B、
2
5
C、
4
5
D、
21
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}共有5項,其中a1=0,a5=2,且|ai+1-ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個數(shù)為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中:
①從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;
②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;
③在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ位于區(qū)域(0,1)內的概率為0.4,則ξ位于區(qū)域(0,2)內的概率為0.8;
④對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關系”的把握越大.
其中真命題的序號為( 。
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某市2月1日至14日的空氣質量指數(shù)趨勢圖,空氣質量指數(shù)(AQI)小于100表示空氣質量優(yōu)良,空氣質量指數(shù)大于200表示空氣重度污染,某人隨機選擇2月1日至2月12日中的某一天到達該市,并停留3天.
(1)求此人到達當日空氣質量優(yōu)良的概率;
(2)求此人停留期間至多有1天空氣重度污染的概率.

查看答案和解析>>

同步練習冊答案