已知f(x)=
x2+1,(x≤0)
-2x,(x>0)
,若f(a)=26,則a=
-5
-5
分析:由已知中f(x)=
x2+1(x≤0)
-2x(x>0)
,結(jié)合f(a)=26,分a≤0和a>0分別求出滿足條件的a值,最后綜合討論結(jié)果可得答案.
解答:解:當(dāng)a≤0時,
解f(a)=a2+1=26得a=-5,或a=5(舍去)
當(dāng)a>0時,
解f(a)=-2a=26得a=-13(舍去)
綜上a=-5
故答案為:-5
點評:本題考查的知識點分段函數(shù)的函數(shù)值,熟練掌握分段函數(shù)分段處理,采用分類討論的方法時行解答是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)當(dāng)a=
1
2
時,解不等式f(x)≤0;
(Ⅱ)若a>0,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,則f{f[f(-2)]}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2,x>0
f(x+1),x≤0
則f(2)+f(-1)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當(dāng)x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實數(shù)x<0及t>0,恒有g(shù)(x)+tf(t)>0,求正實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是
m
1
4
m
1
4

查看答案和解析>>

同步練習(xí)冊答案