已知兩向量數(shù)學(xué)公式數(shù)學(xué)公式,求數(shù)學(xué)公式數(shù)學(xué)公式所成角的大小,

解:||=2,||=,
cos<>==-,∴<,>=120°.
故兩個(gè)向量的夾角為120°
分析:利用向量模的坐標(biāo)公式求出兩個(gè)向量的模,利用向量的數(shù)量積公式求出兩個(gè)向量的數(shù)量積求出兩個(gè)向量的夾角.
點(diǎn)評(píng):本題考查向量的模的坐標(biāo)公式;向量的數(shù)量積公式求向量的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩向量
a
=(1+
3
,1-
3
)
,
b
=(-1,-1)
,求
a
b
所成角的大小,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不共線的三向量?jī)蓛伤傻慕窍嗟,并?img width=43 height=25 src="http://thumb.zyjl.cn/pic1/1899/sx/85/21085.gif">,,試求向量的長(zhǎng)度以及與已知三向量的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市首師大附中高三大練習(xí)數(shù)學(xué)試卷10(文科)(解析版) 題型:解答題

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)精練:直線和圓(解析版) 題型:解答題

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案