如圖,三棱錐V-ABC中,VO⊥平面ABC,O∈CD,AB=4,AD=BD,VA=VB=
13
,BC=
29
,VC=4.
(1)求證:CD⊥AB;
(2)求證:VC⊥平面ABV.
考點(diǎn):直線(xiàn)與平面垂直的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)由VO⊥平面ABC,得到VO⊥AB,連接VD,只要證明AB⊥平面VCD即可;
(2)由(1)可得VC⊥AB,再由計(jì)算證明VC⊥VD,利用線(xiàn)面垂直的判定定理證明.
解答: 證明:(1)∵VO⊥平面ABC,∴VO⊥AB,連接VD,∵AD=BD,VA=VB,∴AB⊥VD,∴AB⊥平面VCD,∴AB⊥CD;
(2)∵AB=4,AD=BD=2,VA=VB=
13
,BC=
29
,VC=4.AB⊥CD,∴CD=
BC2-BD2
=5,VD=
VA2-AD2
=3,
∴VD2+VC2=CD2,∴VC⊥VD,
由(1)知VC⊥AB,由AB∩VD=D,
∴VC⊥平面ABV.
點(diǎn)評(píng):本題考查了三棱錐中線(xiàn)線(xiàn)垂直和線(xiàn)面垂直的判定定理的運(yùn)用,體現(xiàn)了轉(zhuǎn)化的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x||x|≤1},B={x|
x-2
x
≤0},則A∩B為(  )
A、[-1,0)
B、(0,1]
C、[0,2]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用更相減損術(shù)求440與556的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為六級(jí),相對(duì)應(yīng)空氣質(zhì)量的六個(gè)類(lèi)別(見(jiàn)表),指數(shù)越大,級(jí)別越高說(shuō)明污染情況越嚴(yán)重,對(duì)人體的危害也越大.
級(jí)別
指數(shù)
當(dāng)日數(shù)(微克/立方米)范圍0,5050,100100,150150,200200,300300,500
空氣質(zhì)量優(yōu)輕度污染中度污染重度污染嚴(yán)重污染
為了調(diào)查某城市空氣質(zhì)量狀況,對(duì)近300天空氣中PM2.5濃度進(jìn)行統(tǒng)計(jì),得出這300天中PM2.5濃度的頻率分布直方圖.將PM2.5濃度落入各組的頻率視為概率,并假設(shè)每天的PM2.5濃度相互獨(dú)立.
(Ⅰ)當(dāng)空氣質(zhì)量指數(shù)為一級(jí)或二級(jí)時(shí),人們可正常進(jìn)行戶(hù)外運(yùn)動(dòng),根據(jù)樣本數(shù)據(jù)頻率分布直方圖,估算該市居民每天可正常進(jìn)行戶(hù)外運(yùn)動(dòng)的概率;
(Ⅱ)當(dāng)空氣質(zhì)量為“重度污染”和“嚴(yán)重污染”時(shí),出現(xiàn)霧霾天氣的概率為
5
8
,求在未來(lái)2天里,該市恰好有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=ln(x+3)
B、y=-
x+2
C、y=(
1
2
)x
D、y=
1
x
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1過(guò)點(diǎn)(2,3),且一條漸近線(xiàn)的傾斜角為
π
3

(Ⅰ)求雙曲線(xiàn)C的方程;
(Ⅱ)設(shè)雙曲線(xiàn)C的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線(xiàn)C右支上一點(diǎn),求
PA1
PF2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(-2,-3)和以Q為圓心的圓(x-m+1)2+(y-3m)2=4.
(1)求證:圓心Q在過(guò)點(diǎn)P的定直線(xiàn)上;
(2)當(dāng)m為何值時(shí),以PQ為直徑的圓過(guò)原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)定點(diǎn)M(1,2)作兩條相互垂直的直線(xiàn)l1、l2,設(shè)原點(diǎn)到直線(xiàn)l1、l2的距離分別為d1、d2,則d1+d2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x-2,求f(0)、f(1)、f(a)

查看答案和解析>>

同步練習(xí)冊(cè)答案