若不等式組
x+2y-4≥0
x-y-4≤0
y≤1
所表示的平面區(qū)域被直線y-1=k(x-5)分為面積相等的兩部分,則k的值是( 。
A、
1
4
B、
1
2
C、2
D、4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,根據(jù)數(shù)形結合得到直線y-1=k(x-5)經(jīng)過點A,B的中點即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域,
∵直線y-1=k(x-5)過定點C(5,1),
∴若不等式組所表示的平面區(qū)域被直線y-1=k(x-5)分為面積相等的兩部分,
則直線y-1=k(x-5)經(jīng)過點A,B的中點D,
由題意知A(4,0),B(2,1),
則A,B的中點D(3,
1
2
),代入直線y-1=k(x-5)
1
2
-1
=k(3-5),
即k=
1
2
2
=
1
4

故選:A.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合得到直線過A,B的中點D是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的s的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,a1=10,其公差d<0,且a1,2a2+2,5a3成等比數(shù)列,則|a1|+|a2|+|a3|+…+|a15|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2sinx的圖象大致為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(
2
3
,sinα),
b
=(cosα,
3
4
),且
a
b
,則銳角α為(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①給定命題p,q,若“p∨q”為真,則“p∧q”為真;
②已知x,y∈R,“若xy=0,則x=0或y=0”的逆否命題是“若x≠0或y≠0則xy≠0”;
③設a,b,m∈R,若am2<bm2則a<b;
④直線l1:ax+y+1=0與直線l2:x-y+1=0垂直的充要條件是a=1; 
其中正確命題的序號是( 。
A、①④B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=cos(x+φ)的圖象沿x軸向左平移
π
4
個單位后,得到一個奇函數(shù)的圖象,則φ的一個可能取值為(  )
A、
4
B、
π
4
C、0
D、-
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|lnx|,若存在三個不相等的正數(shù)a、b、c使得
f(a)
a
=
f(b)
b
=
f(c)
c
=k,則k的取值范圍為( 。
A、(e,+∞)
B、(
1
e
,+∞)
C、(0,e)
D、(0,
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定命題p:函數(shù)y=ln
1-x
x+1
為奇函數(shù);命題q:函數(shù)y=
ex-1
ex+1
為偶函數(shù),下列說法正確的是( 。
A、p∨q是假命題
B、¬p∧q是假命題
C、p∧q是真命題
D、¬p∨q是真命題

查看答案和解析>>

同步練習冊答案