如圖,點是以線段為直徑的圓上一點,于點,過點作圓的切線,與的延長線交于點,點的中點,連結(jié)并延長與相交于點,延長的延長線相交于點.

(Ⅰ)求證:;
(Ⅱ)求證:是圓的切線.

(Ⅰ)詳見試題解析;(Ⅱ)詳見試題解析.

解析試題分析:(Ⅰ)由,可得,從而可得
通過等量代換及題設(shè)“點的中點”可得.
(Ⅱ)目標(biāo)是要證是直角,連結(jié)便可看出只要證得是等腰三角形即可.顯然是等腰三角形。因為直徑上的圓周角是直角,,所以是直角三角形. 由(Ⅰ)得所以,從而本題得證.
試題解析:證明:(Ⅰ) 是圓的直徑,是圓的切線,
.又,

可以得知,   

的中點,.                        5分

(Ⅱ)連結(jié)
是圓的直徑,
中,由(Ⅰ)得知是斜邊的中點,


是圓的切線,
,
是圓的切線.                                                   10分
考點:1、相似三角形;2、圓的性質(zhì);3、等量代換;4、直角三角形斜邊上的中線;5、幾何證明

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB、CD都是圓的弦,且AB∥CD,F(xiàn)為圓上一點,延長FD、AB交于點E.

求證:AE·AC=AF·DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的半徑,且,是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,己知邊上一點,經(jīng)過點,交于另一點經(jīng)過點,,交于另一點,的另一交點為.

(I)求證:四點共圓;
(II)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交于BC于點E,AB=2AC.

(Ⅰ)求證:BE=2AD;
(Ⅱ)當(dāng)AC=1,EC=2時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:(Ⅰ);   (Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點,點為弦上異于點的任意一點,連結(jié)、并延長交于點、.
⑴ 求證:、、四點共圓;
⑵ 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的內(nèi)接四邊形,,過點的圓的切線與的延長線交于點,證明:

(Ⅰ)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。

(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP

查看答案和解析>>

同步練習(xí)冊答案