精英家教網(wǎng)如圖,在四邊形ABCD中,CA=CD=
1
2
AB=1,
AB
AC
=1,sin∠BCD=
3
5

(1)求BC的長(zhǎng);
(2)求四邊形ABCD的面積;
(3)求sinD的值.
分析:(1)根據(jù)題意可分別求得AC,CD和AB,利用
AB
AC
=1,利用向量的數(shù)量積的性質(zhì)求得cos∠BAC的值,進(jìn)而求得∠BAC,進(jìn)而利用余弦定理求得BC的長(zhǎng).
(2)根據(jù)(1)可求得BC2+AC2=AB2.判斷出∴∠ACB=
π
2
,進(jìn)而在直角三角形中求得cos∠ACD的值,利用同角三角函數(shù)的基本關(guān)系氣的sin∠ACD,然后利用三角形面積公式求得三角形ABC和ACD的面積,二者相加即可求得答案.
(3)在△ACD中利用余弦定理求得AD的長(zhǎng),最后利用正弦定理求得sinD的值.
解答:解:(1)由條件,得AC=CD=1,AB=2.
AB
AC
=1,∴1×2×cos∠BAC=1.則cos∠BAC=
1
2

∵∠BAC∈(0,π),∴∠BAC=
π
3

∴BC2=AB2+AC2-2AB•ACcos∠BAC=4+1-2×2×
1
2
=3.
∴BC=
3

(2)由(1)得BC2+AC2=AB2
∴∠ACB=
π
2

∴sin∠BCD=sin(
π
2
+∠ACD)=cos∠ACD
=
3
5

∵∠ACD∈∈(0,π),∴sin∠ACD=
4
5

∴S△ACD=
1
2
×1×1×
4
5
=
2
5

∴S四邊形ABCD=S△ABC+S△ACD=
3
2
+
2
5

(3)在△ACD中,
AD2=AC2+DC2-2AC•DCcos∠ACD=1+1-2×1×1×
3
5
=
4
5

∴AD=
2
5
5

AD
sin∠ACD
=
AC
sinD
,
sinD=
AC
AD
sin∠ACD=
1
2
5
5
4
5
=
2
5
5
點(diǎn)評(píng):本題主要考查了解三角形的實(shí)際應(yīng)用,正弦定理和余弦定理的應(yīng)用.考查了學(xué)生綜合分析問(wèn)題和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長(zhǎng)等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線(xiàn)段AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線(xiàn)BBl∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線(xiàn)AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線(xiàn)AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF⊥AC交射線(xiàn)BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線(xiàn)為對(duì)稱(chēng)軸,線(xiàn)段AC經(jīng)軸對(duì)稱(chēng)變換后的圖形為A′C′.
①當(dāng)t>
35
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線(xiàn)段A′C′與射線(xiàn)BB,有公共點(diǎn)時(shí),求t的取值范圍(寫(xiě)出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊(cè)答案