A1B1C1是各條棱長(zhǎng)均為a的正三棱柱,D是側(cè)棱CC1的中點(diǎn),求證:平面AB1D⊥平面ABB1A1.">
已知ABC?I>A1B1C1是各條棱長(zhǎng)均為a的正三棱柱,D是側(cè)棱CC1的中點(diǎn),求證:平面AB1D⊥平面ABB1A1.

答案:
解析:

證明:AB1的中點(diǎn)M,則

兩式相加得

由于

DMAA1.

DMAB.

DM⊥平面ABB1A1.而DM平面AB1D,

∴平面AB1D⊥平面ABB1A1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①設(shè)a是實(shí)數(shù),i是虛數(shù)單位,若
a
1+i
+
1+i
2
是實(shí)數(shù),則a=1;
②不等|x-1|+|x-2|≤2的解集為[
1
2
5
2
]
;
e
1
(ex-
2
x
)dx=ee-e-2
;
④已知命題p:在△ABC中,如果cos2A=cos2B,則A=B;命題q:y=
1
x
在定義城內(nèi)是減函數(shù),則“p∧q”為真,“p∧q”為假,“¬p”為真.
其中正確命題的序號(hào)是
 
.(請(qǐng)把正確的序號(hào)全部填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖(圖1)與它的三視圖(圖2),其中俯視圖為正三角形,其它兩個(gè)視圖是矩形.已知D是這個(gè)幾何體的棱A1 C1的中點(diǎn).
(I)求出該幾何體的體積;
(II)求證:直線BCl∥平面AB1D:
(Ⅲ)求平面ABlD與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年崇文區(qū)統(tǒng)一練習(xí)一)(14分)

如圖,在直三棱柱ABCA1B1C1中,∠ABC=90°,AB=BC=AA1=2,DAB的中點(diǎn).

   (I)求AC1與平面B1BCC1所成角的正切值;

   (II)求證:AC1∥平面B1DC

   (III)已知EA1B1的中點(diǎn),點(diǎn)P為一動(dòng)點(diǎn),記PB1=x. 點(diǎn)PE出發(fā),沿著三棱柱的棱,按照EA1A的路線運(yùn)動(dòng)到點(diǎn)A,求這一過程中三棱錐PBCC1的體積表達(dá)式Vx).

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC―A1B1C1中,AB⊥側(cè)面BB1C1C,已知BB1=2,AB=

   (I)求證:C1B⊥平面ABC;

   (II)試在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1;

   (III)在(II)的條件下,求二面角A―EB1―A1的平面角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年5月廣西南寧二中高三(下)月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1
(I)求證:AC1⊥平面A1BC;
(II)求CC1到平面A1AB的距離;
(III)求二面角A-A1B-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案