“1<a<2”是對任意正數(shù)x,2x+≥1的

[  ]
A.

充分不必要條件

B.

必要不充分條件

C.

充要條件

D.

既不充分也不必要條件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)a的取值范圍;
(2)對任給的“n階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

下列說法中錯誤的是(   )

A.命題“a、b、c中至少有一個等于0”的否命題是“a、b、c中沒有一個等于0”

B.命題“存在一個x,使x-1>0”的否命題是“對任給x,都有x-1<0”

C.命題“0,-2,0.4都是偶數(shù)”的否命題是“0,-2,0.4不都是偶數(shù)”

D.命題“x=-4是方程x2+3x-4=0的根”的否命題是“x=-4不是方程x2+3x-4=0的根”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記數(shù)學(xué)公式.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負函數(shù)”;若對定義域內(nèi)的每一個x,總有數(shù)學(xué)公式,則稱f(x)為“n階不減函數(shù)”(數(shù)學(xué)公式為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若數(shù)學(xué)公式既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列說法中錯誤的是


  1. A.
    命題“a、b、c中至少有一個等于0”的否命題是“a、b、c中沒有一個等于0”
  2. B.
    命題“存在一個x,使x-1>0”的否命題是“對任給x,都有x-1<0”
  3. C.
    命題“0,-2,0.4都是偶數(shù)”的否命題是“0,-2,0.4不都是偶數(shù)”
  4. D.
    命題“x=-4是方程x2+3x-4=0的根”的否命題是“x=-4不是方程x2+3x-4=0的根”

查看答案和解析>>

同步練習(xí)冊答案