(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分8分)

           由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f –1(x)能確定數(shù)列{bn},bn= f –1(n),若對于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)在(1)條件下,記為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求;

   (3)已知正數(shù)數(shù)列{cn}的前n項之和 求Tn表達式.

解:(1)由題意的:f –1(x)== f(x)=,所以p =-1,…………2分

       所以an=………………………………………………………………………3分翰林匯

   (2)an=,,…………………………………………4分

       為數(shù)列{dn}的前n項和,,……………………………………5分

       又Hn為數(shù)列{Sn}的調(diào)和平均數(shù),

       所以………8分

       ………………………………………………………10分

   (3)因為正數(shù)數(shù)列{cn}的前n項之和

       所以解之得:c1=1,T1=1……………………………………11分

       當(dāng)

       ……………………………………14分

       所以,累加得:

       ………………………………………………16分

       …………………18分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).

(1)若,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).
(1)若,求方程在區(qū)間內(nèi)的解集;
(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;

(2)求數(shù)列的前項和;

(3)設(shè)數(shù)列的前項和為,若對任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域為R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

 

查看答案和解析>>

同步練習(xí)冊答案