已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比是2:
3

(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當|
MP
|
最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
(Ⅰ)設(shè)橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)

由題意
a2=b2+c2
a:b=2:
3
c=2.

解得a2=16,b2=12.
所以橢圓C的方程為
x2
16
+
y2
12
=1

(Ⅱ)設(shè)P(x,y)為橢圓上的動點,由于橢圓方程為
x2
16
+
y2
12
=1
,故-4≤x≤4.
因為
MP
=(x-m,y)
,
所以|
MP
|2=(x-m)2+y2=(x-m)2+12×(1-
x2
16
)
=
1
4
x2-2mx+m2+12=
1
4
(x-4m)2+12-3m2

因為當|
MP
|
最小時,點P恰好落在橢圓的右頂點,
即當x=4m時,|
MP
|2
取得最小值.而x∈[-4,4],
故有4m≥4,解得m≥1.
又點M在橢圓的長軸上,即-4≤m≤4.
故實數(shù)m的取值范圍是m∈[1,4].
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:山東省濟寧市2012屆高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

點,左焦

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山東省高二下學期期末考試理科數(shù)學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習冊答案