對于函數(shù),若存在∈R,使成立,則稱為的不動點.如果函數(shù)=有且僅有兩個不動點0和2.
(1)試求b、c滿足的關(guān)系式;
(2)若c=2時,各項不為零的數(shù)列{an}滿足4Sn·=1,
求證:<<;
(3)在(2)的條件下, 設(shè)bn=-,為數(shù)列{bn}的前n項和,
求證:.
解: (1)設(shè)∴
(2)∵c=2 ∴b=2 ∴,
由已知可得2Sn=an-an2……①,且an ≠ 1.
當n ≥ 2時,2 Sn -1=an-1-……②,
①-②得(an+an-1)( an-an-1+1)=0,
∴an=-an-1 或 an=-an-1 =-1,
當n=1時,2a1=a1-a12 a1=-1,
若an=-an-1,則a2=1與an ≠ 1矛盾.∴an-an-1=-1, ∴an=-n.
∴要證不等式,只要證 ,即證 ,
只要證 ,即證 .
考慮證不等式(x>0) . (**)
令g(x)=x-ln(1+x), h(x)=ln(x+1)- (x>0) .
∴=, =,
∵x>0, ∴>0, >0,∴g(x)、h(x)在(0, +∞)上都是增函數(shù),
∴g(x)>g(0)=0, h(x)>h(0)=0,∴x>0時,.
令則(**)式成立,∴<<,
(3)由(2)知bn=,則Tn=.
在中,令n=1,2,3,,2008,并將各式相加,
得,
即T2009-1<ln2009<T2008.
科目:高中數(shù)學(xué) 來源:2011屆重慶市萬州二中高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
對于函數(shù),若存在R,使成立,則稱為的不動點.如果函數(shù)N*有且僅有兩個不動點0和2,且
(1)求實數(shù),的值;
(2)已知各項不為零的數(shù)列,并且, 求數(shù)列的通項公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆河南省衛(wèi)輝市第一中學(xué)高三一月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
對于函數(shù),若存在R,使成立,則稱為的不動點.如果函數(shù)N*有且僅有兩個不動點0和2,且
(1)求實數(shù),的值;
(2)已知各項不為零的數(shù)列,并且, 求數(shù)列的通項公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
對于函數(shù),若存在R,使成立,則稱為的不動點.如果函數(shù)N*有且僅有兩個不動點0和2,且
(1)求實數(shù),的值;
(2)已知各項不為零的數(shù)列,并且, 求數(shù)列的通項公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省衛(wèi)輝市高三一月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
對于函數(shù),若存在R,使成立,則稱為的不動點.如果函數(shù)N*有且僅有兩個不動點0和2,且
(1)求實數(shù),的值;
(2)已知各項不為零的數(shù)列,并且, 求數(shù)列的通項公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于函數(shù),若存在∈R,使成立,則稱為的不動點.
如果函數(shù)=有且僅有兩個不動點0和2.
(1)試求b、c滿足的關(guān)系式;
(2)若c=2時,各項不為零的數(shù)列{an}滿足4Sn·=1,
求證:<<;
(3)在(2)的條件下, 設(shè)bn=-,為數(shù)列{bn}的前n項和,
求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com