精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=|x-1|+|2x-1|.

)若對x>0,不等式f(x)≥tx恒成立,求實數t的最大值M;

(Ⅱ)在()成立的條件下,正實數a,b滿足a2+b2=2M.證明:a+b≥2ab.

【答案】(Ⅰ)M=1 (Ⅱ)見解析

【解析】試題分析: 恒成立,采用變量分離,轉化為,利用絕對值三角不等式得解利用重要不等式a2+b2≥2ab得出ab≤1,再用得解

試題解析:(Ⅰ)解: 恒成立

當且僅當,即時取等號,

∴t≤1,∴M=1.

(Ⅱ)證明:∵a2+b2≥2ab,∴ab≤1.

.(當且僅當“a=b”時取等號)①

又∵,∴

,(當且僅當“a=b”時取等號)②

由①、②得.(當且僅當“a=b”時取等號)

∴a+b≥2ab.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知下列命題:

①若,則“”是“”成立的充分不必要條件;

②若橢圓的兩個焦點為,且弦過點,則的周長為16;

③若命題“”與命題“”都是真命題,則命題一定是真命題;

④若命題 ,則

其中為真命題的是__________(填序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各式中,正確的是( 。
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知在平面直角坐標系中,曲線的參數方程是 (為參數),以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是

(Ⅰ) 求曲線交點的平面直角坐標;

(Ⅱ) 點分別在曲線, 上,當最大時,求的面積(為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1,C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.

)求證: ;

)當時,求點B到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函數,求出f(x)的解析式;
(II)若f(x)是奇函數,求出f(x)的解析式;
(III)在(II)的條件下,證明f(x)在區(qū)間 上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
(1)求函數f(x)的定義域;
(2)求函數f(x)的零點;
(3)若函數f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正四棱柱的底面邊長為,高為,現從該正四棱柱的個頂點中任取個點.設隨機變量的值為以取出的個點為頂點的三角形的面積.

(1)求概率;

(2)的分布列,并求其數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線 與圓 )相交于、、四個點.

(Ⅰ)求的取值范圍;

(Ⅱ)當四邊形的面積最大時,求對角線、的交點的坐標.

查看答案和解析>>

同步練習冊答案