設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個(gè)函數(shù):
①f(x)=1;   
②f(x)=x2;   
③f(x)=2xsinx;   
f(x)=
x
x2+x+2

其中屬于有界泛函的是(  )
分析:本題考查閱讀題意的能力,根據(jù)有界泛函的定義進(jìn)行判定:對(duì)于①可以利用定義直接加以判斷,
對(duì)于②可以利用絕對(duì)值的性質(zhì)將不等式變形為|x|≤m,
對(duì)于③,即|2sinx|≤M,只需M≥2,
對(duì)于④,將不等式變形為|
1
x2+x+2
|
≤M,可以求出符合條件的m的最小值
解答:解:對(duì)于①,顯然不存在M都有1≤M|x|成立,故①錯(cuò);
對(duì)于②,|f(x)|=|x2|≤M|x|,即|x|≤M,不存在這樣的M對(duì)一切實(shí)數(shù)x均成立,故不是有界泛函;②錯(cuò)
對(duì)于③,f(x)|=|2xsinx|≤M|x|,即|2sinx|≤M,當(dāng)M≥2時(shí),f(x)=3xsinx是有界泛函..③對(duì)
對(duì)于④,|f(x)=
x
x2+x+2
|)|≤M|x|,即|
1
x2+x+2
|=
1
x2+x+2
≤M,只需
7
4
,④對(duì)
綜上所述,③④
故選B
點(diǎn)評(píng):本題屬于開放式題,題型新穎,考查數(shù)學(xué)的閱讀理解能力.知識(shí)點(diǎn)方面主要考查了函數(shù)的最值及其幾何意義,考生需要有較強(qiáng)的分析問題解決問題的能力,對(duì)選支逐個(gè)加以分析變形,利用函數(shù)、不等式的進(jìn)行檢驗(yàn),方可得出正確結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案