精英家教網 > 高中數學 > 題目詳情

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對40名小學六年級學生進行了問卷調查,并得到如下列聯(lián)表.平均每天喝以上為常喝,體重超過肥胖”.已知在全部40人中隨機抽取1人,抽到肥胖學生的概率為.

常喝

不常喝

合計

肥胖

3

不肥胖

5

合計

40

1)請將上面的列聯(lián)表補充完整;

2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由.

參考公式:

①卡方統(tǒng)計量,其中為樣本容量;

②獨立性檢驗中的臨界值參考表:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)列聯(lián)表見解析;(2)有的把握認為肥胖與常喝碳酸飲料有關.

【解析】

1)由抽到肥胖學生的概率為可知肥胖的學生有10,進而補全列聯(lián)表即可;

2)利用公式求得的值,7.879比較即可判斷

1)設肥胖學生共名,則,解得,

∴肥胖學生共有10,

則列聯(lián)表如下:

常喝

不常喝

合計

肥胖

7

3

10

不肥胖

5

25

30

合計

12

28

40

2)由已知數據可求得,,

因此,有的把握認為肥胖與常喝碳酸飲料有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,平面上定點到定直線的距離為該平面上的動點,過作直線的垂線,垂足為,且

1)試建立適當的平面直角坐標系,求動點的軌跡的方程;

2)過點的直線交軌跡、兩點,交直線于點,已知,,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC,A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大。

()a=2,ABC的面積為,求C的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,BC的對邊分別為a,b,c,且2cos2·cosB-sin(AB)sinB+cos(AC)=-.

(1)求cos A的值;

(2)若a=4,b=5,求方向上的投影.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求直線的普通方程及曲線的直角坐標方程;

(2)設點,直線與曲線相交于兩點,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的多面體中,四邊形為菱形,且,的中點.

(1)求證:平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養(yǎng)殖場使用網箱養(yǎng)殖的方法,收獲時隨機抽取了 100個網箱,測量各箱水產品的產量(單位:),其產量都屬于區(qū)間,按如下形式分成5組,第一組:,第二組:,第三組:,第四組:,第五組:,得到頻率分布直方圖如圖:

定義箱產量在(單位:)的網箱為“低產網箱”, 箱產量在區(qū)間的網箱為“高產網箱”.

(1)若同一組中的每個數據可用該組區(qū)間的中點值代替,試計算樣本中的100個網箱的產量的平均數;

(2)按照分層抽樣的方法,從這100個樣本中抽取25個網箱,試計算各組中抽取的網箱數;

(3)若在(2)抽取到的“低產網箱”及“高產網箱”中再抽取2箱,記其產量分別,求的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數x>2),若恒成立,則整數k的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數;

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數,求X的分布列和數學期望.

(附:若隨機變量,則,,

查看答案和解析>>

同步練習冊答案