【題目】已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)為拋物線(xiàn)上一點(diǎn),且點(diǎn)到焦點(diǎn)的距離為.

1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

2)設(shè)直線(xiàn)軸上的截距為,且與拋物線(xiàn)交于,兩點(diǎn),連接并延長(zhǎng)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn),當(dāng)直線(xiàn)恰與拋物線(xiàn)相切時(shí),求直線(xiàn)的方程.

【答案】1;(2.

【解析】

1)首先利用焦半徑公式得到,再寫(xiě)出拋物線(xiàn)方程即可.

(2)首先設(shè)直線(xiàn),,,聯(lián)立直線(xiàn)與拋物線(xiàn)得到,利用導(dǎo)數(shù)求出在點(diǎn)處的切線(xiàn)方程,從而得到,再根據(jù)三點(diǎn)共線(xiàn)得到,從而得到直線(xiàn)的方程.

1)由題知,,所以,解得,

故拋物線(xiàn)的標(biāo)準(zhǔn)方程為.

2)由題知,直線(xiàn)的斜率存在,不妨設(shè)直線(xiàn),.

,消y,即.

,,

拋物線(xiàn)在點(diǎn)處的切線(xiàn)方程為.

,得,

所以,

三點(diǎn)共線(xiàn),所以及,得,

,

整理得,

即:,解得,

,

故所求直線(xiàn)的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,直線(xiàn)的參數(shù)方程為為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

1)若點(diǎn)在直線(xiàn)上,求直線(xiàn)的極坐標(biāo)方程;

2)已知,若點(diǎn)在直線(xiàn)上,點(diǎn)在曲線(xiàn)上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,都是邊長(zhǎng)為2的等邊三角形,為等腰直角三角形,.

1)證明:;

2)若的中點(diǎn),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

1)求證:PC⊥BC

2)求點(diǎn)A到平面PBC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷(xiāo)售量(單位:萬(wàn)件)與月銷(xiāo)售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷(xiāo)售量和月銷(xiāo)售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:

月銷(xiāo)售單價(jià)(元/件)

月銷(xiāo)售量(萬(wàn)件)

1)若用線(xiàn)性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線(xiàn)方程分別為:,,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線(xiàn)性回歸模型的相關(guān)指數(shù)分別為,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;

3)已知該商品的月銷(xiāo)售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷(xiāo)售單價(jià)為何值時(shí),商品的月銷(xiāo)售額預(yù)報(bào)值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角ABC中,a2_______,求ABC的周長(zhǎng)l的范圍.

在①(﹣cossin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并對(duì)其進(jìn)行求解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,的中點(diǎn),于點(diǎn),.

1)證明:平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,,_________,DC=2,在下面給出的三個(gè)條件中任選一個(gè),補(bǔ)充在上面的問(wèn)題中,并加以解答.(選出一種可行的方案解答,若選出多個(gè)方案分別解答,則按第一個(gè)解答記分)①;②;③.

1)求的大。

2)求△ADC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案