x是實(shí)數(shù),則下列不等式恒成立的是( )
A.x2+4>4
B.
C.lg(x2+1)>lg(2x)
D.x2+1>
【答案】分析:由于 x2-4x+4=(x-2)2≥0,≤1,lg(x2+1)≥lg(2x),故A、B、C不恒成立.由于x2-x+1=+>0,故 x2+1>x 恒成立,由此得出結(jié)論.
解答:解:由于 x2-4x+4=(x-2)2≥0,故A不恒成立.
由于 ≤1,故B不恒成立.
由于 x2+1≥2x,故 lg(x2+1)≥lg(2x),故C不恒成立.
由于x2-x+1=+>0,故 x2+1>x 恒成立,
故選D.
點(diǎn)評(píng):本題主要考查不等式與不等關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
1+|x|
 (x∈R)
時(shí),則下列結(jié)論不正確的是( 。
A、?x∈R,等式f(-x)+f(x)=0恒成立
B、?m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根
C、?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D、?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x1+|x|
 (x∈R)
時(shí),則下列結(jié)論不正確是
 

(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
(3)?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若是實(shí)數(shù)x滿(mǎn)足log2009x=2009-x,則下列不等關(guān)系正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若是實(shí)數(shù)x滿(mǎn)足log2009x=2009-x,則下列不等關(guān)系正確的是


  1. A.
    x2>x>1
  2. B.
    x2>1>x
  3. C.
    1>x>x2
  4. D.
    x>1>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=
x
1+|x|
 (x∈R)
時(shí),則下列結(jié)論不正確的是( 。
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案