若復數(shù)z=
1-ai
i
對應的點在直線x+2y+5=0上,則實數(shù)a的值為(  )
A、1B、2C、3D、4
考點:復數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的幾何意義,求出對應點的坐標,利用點與直線的關系建立方程即可得到結論.
解答: 解:z=
1-ai
i
=
i-ai2
i2
=
a+i
-1
=-a-i
,對應的點的坐標為A(-a,-1),
∵點A(-a,-1)在直線x+2y+5=0,
∴-a-2+5=0,
即a=3,
故選:C
點評:本題主要考查復數(shù)的幾何意義,利用復數(shù)的四則運算是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的n的值是( 。
A、43B、44C、45D、46

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某設備零件的三視圖如圖所示,則這個零件的體積為( 。
A、8B、6C、4D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個圓錐的側(cè)面展開圖為扇形,該扇形的圓心角為
3
,面積為3π,則此圓錐的體積是( 。
A、
2
3
π
3
B、
2
2
π
3
C、
4
2
π
3
D、
2
6
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z=1+2i(i是虛數(shù)單位),則復數(shù)z的虛部為( 。
A、-2B、2C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2+px+q<0的解集為{x|-2<x<3},若f(x)=qx2+px+1
(1)求不等式f(x)>0的解集;
(2)若f(x)<
a
6
恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C依次成等差數(shù)列,其對邊依次分別為a,b,c.
(Ⅰ)若cos(B+C)=-
6
3
,求cosC的值;
(Ⅱ)若a=3,
AC
CB
=3,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有一批貨物由海上從甲地運往乙地,已知輪船的最大航行速度為60海里/小時,甲地至乙地之間的海上航行距離為600海里,每小時的運輸成本由燃料費和其他費用組成,輪船每小時的燃料費與輪船速度的平方成正比,比例系數(shù)為0.5,其余費用為每小時1250元.
(Ⅰ)把全程運輸成本y(元)表示為速度x(海里/小時)的函數(shù);
(Ⅱ)為使全程運輸成本最小,輪船應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)h(x)=
1
x
-x
,若不等式h(x)•h(2k-x)≥(
1
k
-k
2在(0,2k)上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案