已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0。
(1)若直線(xiàn)l過(guò)點(diǎn)P且與圓心C的距離為1,求直線(xiàn)l的方程;
(2)設(shè)過(guò)點(diǎn)P的直線(xiàn)l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線(xiàn)段MN為直徑的圓Q的方程;
(3)設(shè)直線(xiàn)ax-y+1=0與圓C交于A(yíng),B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線(xiàn)l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由。
解:(1)設(shè)直線(xiàn)的斜率為k(k存在),
則方程為,即
又圓C的圓心為(3,-2),半徑r=3,
, 解得,
所以,直線(xiàn)的方程為,即,
當(dāng)的斜率不存在時(shí),的方程為x=2,經(jīng)驗(yàn)證x=2也滿(mǎn)足條件。
(2)由于,而弦心距,
所以
所以P恰為MN的中點(diǎn),
故以MN為直徑的圓Q的方程為
(3)把直線(xiàn),代入圓C的方程,
消去y,整理得,
由于直線(xiàn)交圓C于A(yíng),B兩點(diǎn),

,解得:
則實(shí)數(shù)a的取值范圍是。
設(shè)符合條件的實(shí)數(shù)a存在,由于垂直平分弦AB,故圓心C(3,-2)必在上,
所以的斜率,而,所以,
由于,
故不存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線(xiàn)垂直平分弦AB。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線(xiàn)l過(guò)點(diǎn)P且與圓心C的距離為1,求直線(xiàn)l的方程;
(Ⅱ)設(shè)過(guò)P直線(xiàn)l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓的方程;
(Ⅲ)設(shè)直線(xiàn)ax-y+1=0與圓C交于A(yíng),B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線(xiàn)l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若圓C與圓x2+y2+2x-2y+m=0外切,求m的值;
(2)設(shè)過(guò)點(diǎn)P的直線(xiàn)l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線(xiàn)段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若直線(xiàn)l過(guò)點(diǎn)P且被圓C截得的弦長(zhǎng)為4
2
,求直線(xiàn)l的方程;
(2)設(shè)過(guò)點(diǎn)P的直線(xiàn)l1與圓C交于M、N兩點(diǎn),當(dāng)P恰為MN的中點(diǎn)時(shí),求以線(xiàn)段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,0)及⊙C:x2+y2-6x+4y+4=0.

(1)當(dāng)直線(xiàn)l過(guò)點(diǎn)P且與圓心C的距離為1時(shí),求直線(xiàn)l的方程;

(2)設(shè)過(guò)點(diǎn)P的直線(xiàn)與⊙C交A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求以線(xiàn)段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年天津市漢沽區(qū)高二(上)期中數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線(xiàn)l過(guò)點(diǎn)P且與圓心C的距離為1,求直線(xiàn)l的方程;
(Ⅱ)設(shè)過(guò)P直線(xiàn)l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓的方程;
(Ⅲ)設(shè)直線(xiàn)ax-y+1=0與圓C交于A(yíng),B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線(xiàn)l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案