數(shù)列的前項(xiàng)和為,已知
(Ⅰ)寫出與的遞推關(guān)系式,并求關(guān)于的表達(dá)式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。
解: ,當(dāng)時(shí),也成立。(Ⅱ),
【解析】本試題主要是考查了數(shù)列的通項(xiàng)公式與前n項(xiàng)和之間的關(guān)系的轉(zhuǎn)換,得到遞推關(guān)系,進(jìn)而結(jié)合數(shù)列的錯(cuò)位相減法求和。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091820533605394079/SYS201209182054276375995508_DA.files/image005.png">得到,然后化簡(jiǎn)變形得到關(guān)系式,進(jìn)而得到,遞推得到結(jié)論。
(2)由,得,那么結(jié)合錯(cuò)位相減法得到求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年安徽卷理)(12分)
數(shù)列的前項(xiàng)和為,已知
(Ⅰ)寫出與的遞推關(guān)系式,并求關(guān)于的表達(dá)式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)數(shù)列的前項(xiàng)和為,已知
(Ⅰ)求證:數(shù)列為等差數(shù)列,并寫出關(guān)于的表達(dá)式;
(Ⅱ)若數(shù)列前項(xiàng)和為,問(wèn)滿足的最小正整數(shù)是多少? .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,已知.
(1)證明:當(dāng)時(shí),是等比數(shù)列;
(2)求的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三調(diào)研理科數(shù)學(xué)試卷(2) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com