11.某中學(xué)共有學(xué)生2000人,其中高一年級(jí)學(xué)生共有650人,現(xiàn)從全校學(xué)生中隨機(jī)抽取1人,抽到高二年級(jí)學(xué)生的概率是0.40,估計(jì)該校高三年級(jí)學(xué)生共有550人.

分析 根據(jù)在全校學(xué)生中抽取1名學(xué)生,抽到高二年級(jí)學(xué)生的概率是0.40,先求出高二學(xué)生的人數(shù),即可求出高三學(xué)生人數(shù).

解答 解:∵在全校學(xué)生中抽取1名學(xué)生,抽到高二年級(jí)學(xué)生的概率是0.40,
∴則高二學(xué)生人數(shù)為0.40×2000=800人,
則高三人數(shù)為2000-650-800=550人,
故答案為:550.

點(diǎn)評(píng) 本題主要考查頻率、頻率和總數(shù)的關(guān)系應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在體積為16的正四棱柱ABCD-A1B1C1D1中,點(diǎn)M是DD1的中點(diǎn),DD1=2AD.
(1)求棱BC的長(zhǎng);
(2)求異面直線AD1與C1M所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知角α的終邊經(jīng)過點(diǎn)P(3,-1),則cos(α+3π)=-$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的離心率為$\sqrt{3}$,則它的漸近線方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定點(diǎn)A(-2,0),F(xiàn)(1,0),定直線l:x=4,動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的$\frac{1}{2}$.設(shè)點(diǎn)P的軌跡為C,過點(diǎn)F的直線交C于D、E兩點(diǎn),直線AD、AE與直線l分別相交于M、N兩點(diǎn).
(Ⅰ)求C的方程;
(Ⅱ)以MN為直徑的圓是否恒過一定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項(xiàng)均不為零的數(shù)列{an}滿足:${a_{n+2}}{a_n}={a_{n+1}}^2({n∈{N^*}})$,且a1=2,8a4=a7
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令${b_n}=\frac{a_n}{{n({n+1}){2^n}}}({n∈{N^*}})$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.給定橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),稱圓心在原點(diǎn)O,半徑為$\sqrt{{a}^{2}+^{2}}$的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F($\sqrt{2}$,0),其短軸上的一個(gè)端點(diǎn)到F的距離為$\sqrt{3}$.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的動(dòng)點(diǎn),過點(diǎn)P作橢圓的切線l1,l2交“準(zhǔn)圓”于點(diǎn)M,N.
(。┊(dāng)點(diǎn)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求直線l1,l2的方程并證明l1⊥l2
(ⅱ)求證:線段MN的長(zhǎng)為定值并求該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z(1-i)=|1-i|+i,則z的共軛復(fù)數(shù)為( 。
A.$\frac{{\sqrt{2}-1}}{2}-\frac{{\sqrt{2}+1}}{2}i$B.$\frac{{\sqrt{2}+1}}{2}-\frac{{\sqrt{2}-1}}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)方程log0.5(x+$\frac{1}{x-1}$+1)-a=0在x∈(1,+∞)上有零點(diǎn),求a的取值范圍;
(2)方程log0.5(x+$\frac{1}{x-1}$+1)-a=0在x∈[2,+∞)上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案