精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
4
+
y2
2
=1
,過程P(1,1)作直線l,與橢圓交于A,B兩點,且點P是線段AB的中點,則直線l的斜率為______.
設A(x1,y1)、B(x2,y2),
∵A、B兩點在橢圓
x2
4
+
y2
2
=1
上,∴
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1
,
兩式相減可得:
1
4
(x12-x22)+
1
2
(y12-y22)=0,化簡得
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)

又∵點P(1,1)是AB的中點,∴x1+x2=2,y1+y2=2,
因此可得直線l的斜率k=
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)
=-
1
2

故答案為:-
1
2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸為AB,過點B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F1為橢圓的左焦點且
AF1
F1B
=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ.連接AQ并延長交直線l于點M,N為MB的中點,判定直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知:橢圓
x2
a2
+
y2
b2
=1
(a>b>0),過點A(-a,0),B(0,b)的直線傾斜角為
π
6
,原點到該直線的距離為
3
2

(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F兩點,若
ED
=2
DF
,求直線EF的方程;
(3)是否存在實數k,直線y=kx+2交橢圓于P,Q兩點,以PQ為直徑的圓過點D(-1,0)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點A的坐標是(0,-1),且右焦點Q到直線x-y+2
2
=0的距離為3.
(1)求橢圓方程;
(2)試問是否存在斜率為k(k≠0)的直線l,使l與橢圓M有兩個不同的交點B、C,且|AB|=|AC|?若存在,求出k的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,長軸長為4
5
,直線l:y=x+m交橢圓于不同的兩點A,B.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)若直線l不經過橢圓上的點M(4,1),求證:直線MA,MB的斜率互為相反數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)d的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
2
+1
).一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
4
+y2=1
,過點M(-1,0)作直線l交橢圓于A,B兩點,O是坐標原點.
(1)求AB中點P的軌跡方程;
(2)求△OAB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C的方程為x2=2py(p>0),焦點F為(0,1),點P(x1,y1)是拋物線上的任意一點,過點P作拋物線的切線交拋物線的準線l于點A(s,t).
(1)求拋物線C的標準方程;
(2)若x1∈[1,4],求s的取值范圍.
(3)過點A作拋物線C的另一條切線AQ,其中Q(x2,y2)為切點,試問直線PQ是否恒過定點,若是,求出定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

【理科】拋物線頂點在原點,焦點是圓x2+y2-4x=0的圓心.
(1)求拋物線的方程;
(2)直線l的斜率為2,且過拋物線的焦點,與拋物線交于A、B兩點,求弦AB的長;
(3)過點P(1,1)引拋物線的一條弦,使它被點P平分,求這條弦所在的直線方程.

查看答案和解析>>

同步練習冊答案