設(shè)f(x)=cos30°g(x)-1.若,則g(x)=

A.

B.

C.2cosx

D.2sinx

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在[-
π
2
π
2
]
上的偶函數(shù),當(dāng)x∈[0,
π
2
]
時(shí),f(x)=2cosx-3sinx,設(shè)a=f(cos1),b=f(cos2),c=f(cos3),則a,b,c的大小關(guān)系為
b>a>c
b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面上A、B兩點(diǎn)坐標(biāo)分別是(-cos
α
2
  ,sin
α
2
)   ,(cos
2
  ,sin
2
) .  α∈[0,
π
2
]
,
(1)求|
AB
|的最大值和最小值;
(2)設(shè)函數(shù)f(x)=
AB
2
+4a|
AB
|-3,a∈R,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知f(x)為定義在數(shù)學(xué)公式上的偶函數(shù),當(dāng)數(shù)學(xué)公式時(shí),f(x)=2cosx-3sinx,設(shè)a=f(cos1),b=f(cos2),c=f(cos3),則a,b,c的大小關(guān)系為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案