已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,….
(Ⅰ)證明數(shù)列{lg(1+an)}是等比數(shù)列;
(Ⅱ)設(shè)Tn=(1+a1)(1+a2)…(1+an),求Tn及數(shù)列{an}的通項(xiàng)公式.
分析:(Ⅰ)把點(diǎn)(a
n,a
n+1)代入函數(shù)f(x)的解析式,可得到a
n+1與a
n關(guān)系式兩邊取對(duì)數(shù)化簡(jiǎn)可得
=2.進(jìn)而可證明數(shù)列{lg(1+a
n)}為等比數(shù)列.
(Ⅱ)根據(jù)(Ⅰ){lg(1+a
n)}為等比數(shù)列,可求得數(shù)列l(wèi)g(1+a
n)}的通項(xiàng)公式,進(jìn)而可求數(shù)列{a
n}的通項(xiàng)公式.根據(jù){a
n}的通項(xiàng)公式代入T
n=(1+a
1)(1+a
2)…(1+a
n),進(jìn)而求得T
n 解答:(Ⅰ)證明:由已知,得a
n+1=a
n2+2a
n,
∴a
n+1+1=(a
n+1)
2.
∵a
1=2,∴a
n+1>1.
兩邊取對(duì)數(shù),得lg(a
n+1+1)=2lg(a
n+1),
即
=2.數(shù)列{lg(1+a
n)}是以lg3為首項(xiàng),
公比為2的等比數(shù)列.
(Ⅱ)解:由(Ⅰ)得
lg(an+1)=2n-1lg3=lg32n-1,
∴
an+1=32n-1,
∴
an=32n-1-1.
∴T
n=(1+a
1)(1+a
2)(1+a
n)
=
3×321×322××32n-1=
31+2+22++2n-1=
32n-1.
點(diǎn)評(píng):本題主要考查了數(shù)列等比關(guān)系的確定.確定的關(guān)鍵是每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù).