已知函數(shù)f(x)=sin2x+2
3
sinxcosx+3cos2x

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)已知f(α)=3,且α∈(0,π),求α的值.
分析:先把函數(shù)進(jìn)行化簡,f(x)=2sin(2x+
π
6
)+2
(1)-
π
2
+2kπ≤2x+
π
6
≤ 
π
2
+2kπ,k∈Z
,解不等式可求
(2)把已知代入可得sin(2α+
π
6
)=
1
2
,求解即可.
解答:解:(1)f(x)=
3
sin2x+cos2x+2
=2sin(2x+
π
6
)+2

-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
;
-
π
3
+kπ≤x≤
π
6
+kπ
;.
∴函數(shù)f(x)的單調(diào)增區(qū)間為[-
π
3
+kπ ,  
π
6
+kπ ]  (k∈Z)

(2)由f(α)=3,得2sin(2α+
π
6
)+2=3

sin(2α+
π
6
)=
1
2

2α+
π
6
=
π
6
+2k1π
,或2α+
π
6
=
6
+2k2π
(k1,k2∈Z),
即α=k1π或α=
π
3
+k2π
(k1,k2∈Z).∵α∈(0,π),
α=
π
3
點(diǎn)評:本題考查了三角函數(shù)的性質(zhì):單調(diào)性,還考查了三角公式中的二倍角及和差角公式的綜合運(yùn)用,在處理三角函數(shù)的單調(diào)區(qū)間的問題時,常用整體思想,類比正(余)弦函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時有x2∈S,給出下列四個結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項(xiàng)和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)對一個實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案