在△ABC所在平面上有一點P,滿足數(shù)學公式,則△PBC與△ABC面積之比是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:根據(jù)點所滿足的條件知,P是三角形的重心,根據(jù)重心的特點,得到兩個三角形的高之比,而兩個三角形底邊相同,所以得到結(jié)果.
解答:∵
∴P是三角形的重心,
∴P到頂點的距離是到對邊距離的2倍,
∵△PBC與△ABC底邊相同,
∴△PBC與△ABC面積之比是
故選A
點評:用一組向量來表示一個向量,是以后解題過程中常見到的,向量的加減運算是用向量解決問題的基礎,要學好運算,才能用向量解決立體幾何問題,三角函數(shù)問題,本題把條件等式中的一個向量移項以后,就是用一組基底來表示向量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

點O在△ABC所在平面上,若
OA
OB
=
OB
OC
=
OC
OA
,則點O是△ABC的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,則邊AC上的高h的最大值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,數(shù)學公式=數(shù)學公式+數(shù)學公式+數(shù)學公式,且數(shù)學公式數(shù)學公式=8,則邊AC上的高h的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省哈爾濱六中高一(上)期末數(shù)學試卷(解析版) 題型:選擇題

點O在△ABC所在平面上,若,則點O是△ABC的( )
A.三條中線交點
B.三條高線交點
C.三條邊的中垂線交點
D.三條角分線交點

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省常州中學高三最后沖刺綜合練習數(shù)學試卷6(文科)(解析版) 題型:解答題

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,=++,且=8,則邊AC上的高h的最大值為   

查看答案和解析>>

同步練習冊答案