【題目】已知向量 與向量 的夾角為θ,且| |=1,| |= .
(1)若 ∥ ,求 ;
(2)若 ﹣ 與 垂直,求θ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
(II)討論f(x)在[ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長(zhǎng)為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,,.
(1)當(dāng)時(shí),求的大。
(2)求的面積S的最小值及使得S取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2 .
(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點(diǎn),且直線CN與平面MAB所成角的正弦值為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)電影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全部售出;當(dāng)票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個(gè)合適的票價(jià),基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放映一場(chǎng)電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價(jià),用y(元)表示該電影放映一場(chǎng)的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價(jià)定為多少時(shí),電影放映一場(chǎng)的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)F重合,且橢圓短軸的兩個(gè)端點(diǎn)與F構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點(diǎn)(1,0)的直線l與橢圓交于不同兩點(diǎn)P、Q,試問在x軸上是否存在定點(diǎn)E(m,0),使 恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對(duì)任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的定義域?yàn)椋ī乤,0)∪(0,a)(0<a<1),其圖象上任意一點(diǎn)P(x,y)滿足x2+y2=1,則給出以下四個(gè)命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域?yàn)椋╝2 , 1)其中正確的命題個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com