(1)已知sin(
π
4
-x)=
5
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)
的值.
(2)已知tan(α-β)=
1
2
,tanβ=-
1
7
,且α,β∈(0,π),求2α-β的值.
分析:(1)通過
π
4
+x=
π
2
-(
π
4
-x)
,求出cos(
π
4
+x)
,利用同角三角函數(shù)的基本關系式求出cos(
π
4
-x)
,通過二倍角公式q求出cos2x,即可求出
cos2x
cos(
π
4
+x)
的值.
(2)通過已知條件,利用二倍角的正切公式求出tan2(α-β),結合tan(2α-β)=tan[2(α-β)+β],利用兩角和的正切公式,求出tanβ,三角函數(shù)的值推出角的范圍,求出結果.
解答:解:(1)cos(
π
4
+x)=cos[
π
2
-(
π
4
-x)]=sin(
π
4
-x)=
5
13
,
0<x<
π
4
∴0<
π
4
-x<
π
4

cos(
π
4
-x)=
1-sin2(
π
4
-x)
=
12
13
 
cos2x=sin(
π
2
-2x)=sin2(
π
4
-x)=
120
169

原式=
120
169
5
13
=
24
13

(2)∵tan(α-β)=
1
2

tan2(α-β)=
2tan(α-β)
1-tan2(α-β)
=
4
3

∴tan(2α-β)=tan[2(α-β)+β]=
tan2(α-β)+tanβ
1-tan2(α-β)tanβ
=1

因為tanβ=-
1
7
,而β∈(0,π)
π
2
<β<π
,
tan(α-β)=
1
2
=
tanα+
1
7
1-
1
7
tanα
,
解得tanα=
1
3
,α∈(0,π),
0<α<
π
4
,
∴-π<2α-β<0
2α-β=-
4
點評:本題是中檔題,考查三角函數(shù)的基本知識,公式的靈活運用,注意角的范圍的判斷,角的變換的技巧,角的大小的值的求法,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知sinα=-
35
,且α為第三象限角,求cosα,cos2α的值
(2)求值:sin6°sin42°sin66°sin78°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知sinα-cosα=
2
,求sin3α-cos3α的值.
(2)已知tanα=-3,求2sin2α-cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求解下列問題
(1)已知sinα•cosα=
1
8
,且
π
4
<α<
π
2
,求cosα-sinα的值;
(2)已知
1+tanα
1-tanα
=3
,求
2sinα-3cosα
4sinα-9cosα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知sinα-cosα=
17
13
,α∈(0,π),求tanα的值;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知sin(α-3π)=2cos(α-4π),求
sin(π-α)+5cos(2π-α)
2sin(
2
-α)-sin(-α)
;
(2)化簡
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)

查看答案和解析>>

同步練習冊答案